簡易檢索 / 詳目顯示

研究生: 張智宇
Chih-Yu Chang
論文名稱: 應用於非侵入式血糖儀之毫米波發射機晶片與印刷電路板探針
Millimeter-Wave Transmitter IC and PCB Probe for Non-Invasive Glucose Meter
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 邱弘緯
Hung-Wei Chiu
鄭桂忠
Gui-Zhong Zheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 49
中文關鍵詞: 電壓控制震盪器功率放大器阻抗轉換器印刷電路板探針
外文關鍵詞: Voltage-control Oscillator, Power Amplifier, Transformer, Printed Circuit Board (PCB) probe
相關次數: 點閱:1011下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究設計並製作毫米波發射機晶片、印刷電路板探針與功率放大器,適用於非侵入式血糖量測系統之毫米波發射機與印刷電路板探針以及適用於雷達系統之AB型功率放大器,實現於台積電CMOS 90 nm 1P9M製程。
    非侵入式血糖偵測系統之發射機操作於32 GHz 至 36 GHz且實現於台積電CMOS 90 nm 1P9M製程,此發射機中的負轉導架構用於實現LC震盪器,AB型功率放大器架構作為輸出級,採用差動疊接架構,疊接架構做為功率輸出級以提供足夠之輸出功率,緩衝器連接震盪器以及功率放大器,功率放大器輸出使用雙端轉單端之變壓器作為匹配元件以減少面積,此外,採用電容耦合技術確保穩定度。此發射機一共消耗249.44 毫瓦,全下針量測時,儀器頻譜分析儀時所測得之輸出功率為16.95 dBm @ 32.268 GHz。
    印刷電路板探針是由模擬軟體HFSS設計,並使用板材 Rogers4003C 實現作為發射器的輸出。連接器用於連接發射機晶片和印刷電路板探針。探針的阻抗為83 Ω。這個阻抗是針對葡萄糖實驗中毫米波吸收差異較大的阻抗所決定的。


    A Millimeter-Wave transmitter with PCB probe are designed and implemented with TSMC CMOS 90 nm 1P9M process. A transmitter with PCB probe is designed for non-invasive glucose meter.
    A 32-36 GHz CMOS Transmitter is designed and implemented using 90-nm CMOS technology for non-invasive glucose sensing system. The negative-gm architecture is used to realize the LC oscillator. Based on the cascode differential class-AB power amplifier architecture, the PA is realized by using transformers as matching elements to save chip area. Moreover, a neutralization technique is applied to ensure stability. Consuming the power of 249.44 mW, the transmitter achieves the output power of 16.95 dBm (on wafer) at 32.268 GHz.
    A PCB probe is designed in HFSS and implemented using Rogers4003C for the output of transmitter. The connector is used to connect transmitter and PCB probe. The impedance of the probe is 83 Ω. It is designed for the large difference of MMW absorption in the glucose experiment.

    摘要 iv Abstract v 誌謝 vi Contents vii List of Figures viii Chapter 1 Introduction 1 1.1 Introduction 1 Chapter 2 Probe Design 3 2.1 PCB Probe Structure 3 2.2 Phantom of Human Tissue 6 2.3 MMW Absorption Experiment 9 Chapter 3 A Ka-band Transmitter for Non-invasive Glucose Sensing System 12 3.1 System Structure 12 3.2 Transmitter 13 3.2.1 Class-AB Power Amplifier 15 3.2.2 VCO and Buffer 19 3.3 PCB Design in HFSS 27 Chapter 4 Measurement Results 29 4.1 Transmitter Measurement Results with SA 29 4.1.1 On-Wafer Measurement 29 4.1.2 On-Board Measurement with Connector 31 4.1.3 On-Board Measurement with Phantom 33 Chapter 5 Conclusion 37 5.1 Conclusion 37 Reference 38

    [1] Tzu-Yu Tseng, Hsiao-Chin Chen and Hung-Wei Chiu, "Monolithic CMOS Microwave Heater with Programmable Thermostat Function for Thermotherapy", IEEE Trans. Circuits Syst. II, Exp. Briefs (Early Access), July 2020. (SCI).
    [2] J. E. Johnson, O. Shay, C. Kim and C. Liao, "Wearable Millimeter-Wave Device for Contactless Measurement of Arterial Pulses," in IEEE Transactions on Biomedical Circuits and Systems, vol. 13, no. 6, pp. 1525-1534, Dec. 2019.
    [3] G. Mansutti, A. T. Mobashsher, K. Bialkowski, B. Mohammed and A. Abbosh, "Millimeter-Wave Substrate Integrated Waveguide Probe for Skin Cancer Detection," in IEEE Transactions on Bio-medical Engineering, vol. 67, no. 9, pp. 2462-2472, Sept. 2020.
    [4] P. H. Siegel, Y. Lee and V. Pikov, "Millimeter-wave non-invasive monitoring of glucose in anesthetized rats," 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, 2014.
    [5] M. Koutsoupidou et al., "Study and Suppression of Multipath Signals in a Non-Invasive Millimeter Wave Transmission Glucose-Sensing System," in IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Sept. 2020.
    [6] Wei Tang and Xiao Bo Yang, "Design of Ka-band probe transitions," 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, 2011, pp. 25-28.
    [7] G. Anand, R. Lahiri and R. Sadhu, "Wide band microstrip to microstrip vertical coaxial transition for radar & EW applications," 2016 Asia-Pacific Microwave Conference (APMC), 2016, pp. 1-4.
    [8] F. Wang, "Microwave-based non-invasive blood glucose levels monitoring using flexible UWB antennas," 12th European Conference on Antennas and Propagation (EuCAP 2018), London, 2018, pp. 1-4.
    [9] D.Andreuccetti, R.Fossi and C.Petrucci: An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz-100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C.Gabriel et al. in 1996. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/
    [10] Tzu-Fan Lee, Hsiao-Chin Chen and Chien-Wen Chiu, "Millimeter Wave Absorption Spectroscopy for Non-Invasive Glucose Measurement," 2019 International Conference on Biomedical Engineering and Biotechnology (ICBEB), Seoul, Republic of Korea, October 22-25, 2019.
    [11] J. Lin, Y. Lin, Y. Hsiao and H. Wang, "A K-band transformer based power amplifier with 24.4-dBm output power and 28% PAE in 90-nm CMOS technology," 2017 IEEE MTT-S (IMS), 2017
    [12] J. Y. Liu, C. Chan and S. S. H. Hsu, "A K-band power amplifier with adaptive bias in 90-nm CMOS," 2014 9th European Microwave Integrated Circuit Conference, Rome, 2014
    [13] S. Shakib, H. Park, J. Dunworth, V. Aparin and K. Entesari, "A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS," in IEEE Journal of Solid-State Circuits, Dec. 2016.
    [14] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS," in IEEE Transactions on Circuits and Systems I: Regular Papers, Sept. 2018.

    無法下載圖示 全文公開日期 2027/02/08 (校內網路)
    全文公開日期 2027/02/08 (校外網路)
    全文公開日期 2027/02/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE