簡易檢索 / 詳目顯示

研究生: 蔡承志
Chen-Chih Tsai
論文名稱: 靜電紡絲0.5Pb(Ni0.33Nb0.67)O3-0.5Pb(Zr0.3Ti0.7)O3/PVDF壓電複合材料之結晶相與特性之研究
Crystalline phase and electric properties of electrospinning 0.5Pb(Ni0.33Nb0.67)O3-0.5Pb(Zr0.3Ti0.7)O3/ PVDF
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 陳士勛
Shih-Hsun Chen
陳寶祺
Pao-Chi Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 77
中文關鍵詞: 聚偏氟乙烯鎳鈮鋯鈦酸鉛壓電陶瓷系統靜電紡絲複合材料0-3結合
外文關鍵詞: PVDF, Electrospinning, PNNZT piezoelectric ceramic system, Composite, 0-3 connectivity
相關次數: 點閱:199下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚偏二氟乙烯(Polyvinylidene Fluoride,PVDF),因其具備鐵電、焦電與壓電性、高化學穩定性與溫度穩定性等,並且有輕薄及可撓曲等優秀機械特性,不論是在電子元件、生醫或環保方面皆有廣泛應用,然而其壓電與介電特性卻遠低於壓電陶瓷,為提升其特性,本文利用靜電紡絲法(Electrospinning)製備鎳鈮鋯鈦酸鉛 0.5Pb(Ni0.33Nb0.67)O3-0.5Pb(Zr0.3Ti0.7)O3 壓電陶瓷和聚偏二氟乙烯(PVDF)壓電聚合物之壓電複合材料。以0-3結合(connectivity)方式添加不同體積百分比(0 Vol% ~30 Vol%)之陶瓷粉末比較其結晶結構與特性之改變。利用XRD、FTIR、SEM對0.5PNNZT / PVDF納米纖維複合材料進行晶相、微觀結構等分析。比較靜電紡絲工作參數之影響,在最佳參數下能備製纖維直徑均勻且無珠狀結構之奈米纖維,且β相含量高達85 %,在添加陶瓷粉末後,可更進一步提升PVDF之β相含量至90 %。電滯曲線與介電常數實驗結果顯示,添加PNNZT可提升PVDF之介電與壓電特性,添加量30 vol%時介電常數為33,最大極化值可達0.5μC/cm2,。壓電特性方面,d33值在添加量30 vol%時可達19.3×10-12C/N,產生之電壓訊號可達5V。


    Polyvinylidene fluoride (PVDF), which has ferroelectricity, pyroelectric and piezoelectric properties, high chemical and temperature stability, and excellent mechanical properties such as lightness and flexibility. It is widely used in electronicst, biomedical or environmental protection. However, its piezoelectric and dielectric properties are much lower than piezoelectric ceramics. In order to improve its characteristics, composite of 0.5Pb(Ni0.33Nb0.77)O3-0.5Pb(Zr0.3Ti0.7)O3 (0.5PNNZT) piezoelectric ceramic and Polyvinylidene fluoride (PVDF) piezoelectric polymer was prepared by Electrospinning. The change in crystal structure and properties of ceramic powders with different volume percentages (0 vol% to 30 vol%) was added in 0-3 connectivity. The crystal phase and microstructure of 0.5PNNZT / PVDF nanofiber composites were analyzed by XRD, FTIR, SEM and EDS. The results show that theβ phase of PVDF can be increase to 90% by adding PNNZT ceramic powder. The hysteresis curve and dielectric constant was improved by adding PNNZT ceramic powder. The dielectric constant is 33 when the addition amount is 30 Vol%, and the polarization value can reach 0.5 μC/cm2. In terms of piezoelectric characteristics, the d33 value can reach 19.3×10-12 C/N when the added amount is 30 vol%, and the generated voltage signal can reach 5 V.

    摘要...............................................................Ⅰ Abstract...........................................................Ⅱ 圖目錄.............................................................Ⅴ 表目錄.............................................................Ⅶ 第一章 序論.........................................................1 第二章 文獻回顧與基礎理論...........................................3 2.1 壓電材料...................................................3 2.1.1 介電特性.............................................4 2.1.2 介電損失.............................................5 2.1.3 鐵電特性.............................................8 2.1.4 極化.................................................9 2.2 壓電聚合物-聚偏氟乙烯......................................9 2.2.1 靜電紡絲............................................11 2.2.2 靜電紡絲實驗參數....................................13 2.3 聚偏二氟乙烯結晶分析......................................15 2.4 壓電陶瓷材料系統..........................................19 2.5 陶瓷/聚合物結合方式.......................................22 2.6 壓電陶瓷/壓電聚合物 複合材料..............................23 第三章 實驗方法及材料分析方法......................................30 3.1 實驗藥品規格..............................................30 3.2 實驗儀器規格..............................................31 3.3 實驗流程與基礎特性量測....................................32 3.3.1 實驗步驟............................................32 3.3.2 0.5PNNZT粉末備製....................................33 3.3.3 造粒................................................33 3.3.4 PVDF溶液配製.......................................33 3.3.5 靜電紡絲............................................33 3.3.6 基本性質量測與觀察..................................34 3.4 電性量測..................................................34 3.4.1 極化值與電場(P-E)曲線量測..........................34 3.4.2 導電度與漏電流量測..................................34 3.4.3 介電常數............................................35 3.4.4 壓電常數(d33)量測...................................35 3.4.5 輸出電壓量測........................................35 第四章 結果與討論..................................................36 4.1 靜電紡絲最佳實驗參數......................................36 4.1.1 工作距離............................................36 4.1.2 溶液濃度............................................37 4.1.3 收集器滾輪轉速......................................38 4.2 靜電紡絲PVDF之晶相分析....................................40 4.2.1 X-ray繞射分析........................................47 4.2.2 FTIR分析.............................................48 4.3 鎳鈮鈦鋯酸鉛陶瓷特性之研究................................43 4.4 靜電紡絲PNNZT/PVDF之晶相分析..............................46 4.5 靜電紡絲PNNZT/PVDF微觀結構與成分分析......................49 4.6 靜電紡絲PNNZT/PVDF之鐵電特性..............................55 4.7 靜電紡絲PNNZT/PVDF之導電度與漏電流........................63 4.8 靜電紡絲PNNZT/PVDF之介電特性..............................65 4.9 靜電紡絲PNNZT/PVDF之壓電特性..............................67 第五章 結論........................................................70 第六章 參考文獻....................................................71

    1. Wu CM, Chiou HG, Lin SL, Lin JM. Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior. Journal of Applied Polymer Science. 2012;126:E89-E97.
    2. W.D. Kingery,H.K.Bowen, D.R.Uhlmann, Introduction to ceramics,John Wily and Sons.,New York,1975
    3. R. GREGORIO, JR, E. M. UENO, Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride) (PVDF), JOURNAL OF MATERIALS SCIENCE 34 (1999) 4489 – 4500
    4. A. Salimi, A.A. Yousefi, FTIR studies of b-phase crystal formation in stretched PVDF films, Polymer Testing 22 (2003) 699–704
    5. S. Lanceros-Méndez, J. F. Mano, A. M. Costa, V. H. Schmidt, FTIR AND DSC STUDIES OF MECHANICALLY DEFORMED β-PVDF FILMS, J. MACROMOL. SCI.—PHYSICS, B40(3&4), 517–527 (2001)
    6. Humphreys J, Lewis ELV, Ward IM, Nix EL, MCGrath JC. A study of the mechanical anisotropy of high-draw, low-draw, and voided PVDF. Polymer Science Part B: Polymer Physics. 1988;26:141-158.
    7. F. Mokhtari, M. Latifi, M. Shamshirsaz, Electrospinning/electrospray of polyvinylidene fluoride (PVDF): piezoelectric nanofibers, The Journal of The Textile Institute, 2015
    8. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific: Singapore. 2005.
    9. https://zh.wikipedia.org/zh-tw/%E9%9D%9C%E9%9B%BB%E7%B4%A1%E7%B5%B
    10. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride):Determination, processing and applications, Progress in Polymer Science 39 (2014) 683–706
    11. Ribeiro C, Sencadas V, Gomez Ribelles JL, Lanceros-Méndez S. Influ-ence of processing conditions on polymorphism and nanofibermorphology of electroactive poly(vinylidene fluoride) electrospunmembranes. Soft Mater 2010;8:274–87.
    12. Zheng J, He A, Li J, Han CC. Polymorphism control of poly(vinylidenefluoride) through electrospinning. Macromolecular Rapid Commu-nications 2007;28:2159–62.
    13. 毛梦烨,黄 涛,吴维杰,俞 昊,杨 婷,汪凤宇, 纺丝参数对聚偏氟乙烯静电纺纤维膜 β相含量的影响, Synthetic Fiber in China, 2014年第43卷第5期
    14. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly(vinylidene fluoride):Determination, processing and applications, Progress in Polymer Science 39 (2014) 683–706
    15. Lund A, Hagstrom B. Melt spinning of beta-phase poly(vinylidenefluoride) yarns with and without a conductive core. Journal ofApplied Polymer Science 2011;120:1080–9.
    16. H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning, Polymer 40 (1999) 4585–4592
    17. Anjana Jain, Prashanth K. J., Asheesh Kr. Sharma, Arpit Jain, Rashmi P.N, Dielectric and Piezoelectric Properties of PVDF/PZT Composites: A Review, POLYMER ENGINEERING AND SCIENCE—2015
    18. A. J. Moulson and J. M. Herbert, Electroceramics, 2nd Ed., John Wiley and Sons,Inc., New York, 2003.
    19. Masao Kondo and Kazuaki Kurihara, Fujitsu Laboratories, Ltd., Atsugi 243-0197, Japan, 2001.
    20. S. W. Choi, T. R. Shrout, S. J. Jang, and A. S. Bhalla, Morphotropic Phase Boundary in PbMg1/3Nb2/3O3–PbTiO3 System, Mater. Lett., 8 [6,7] 253–55 , 1989.
    21. Y. Yamashita, Large Electromechanical Coupling Factors in Perovskite Binary Material System, Jpn. J. Appl. Phys., 33 [9B] 5328–31, 1994.
    22. E. A. Buyanova, P. L. Strelets, I. A. Serova, and V. A. Isupov, Ferroelectric Properties of PbNi1/3Nb2/3O3‧PbTiO3‧PbZrO3 Solid Solutions, Bull. Acad. Sci. USSR, Phys. Ser. (Engl. Transl.), 29, 1877–80, 1965.
    23. J. H. Moon and H. M. Jang, Effect of Sintering Atmosphere on Densification Behavior and Piezoelectric Properties of PbNi1/3Nb2/3O3–PbTiO3–PbZrO3 Ceramics, J. Am. Ceram. Soc., 76 [2] 549–52, 1993.
    24. H. Banno, T. Tsunooka and I. Shimano, Proc. 1st Meet. Ferroelectric Materials and Their Applications, Kyoto(Keihin Printing, Tokyo, 1997)p. 399, 1997.
    25. D.Luff, R. Lane, K. R. Brown and H. J. Marshallsay, Trans. J. Br. Ceram. Soc. 73(1974) 251, 1974.
    26. Masao Kondo, Masaharu Hida, Mineharu Tsukada, Kazuaki Kurihara and Nobuo Kamehara, Piezoelectric Properties of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 Ceramic, Jpn. J. Appl. Vol. 36(1997) pp. 6043~6045. Part1, No. 9B, September 1997.
    27. Sandeep Mahajan, Chandra Prakash, O.P. Thakur, Piezoelectric properties of 0.5(PbNi1/3Nb2/3)O3–0.5Pb(Zr0.32Ti0.68)O3 ceramics prepared by solid state reaction and mechanochemical activation-assisted method, Elelctroceramics Group, Solid State Physics Laboratory, Lucknow Road, Delhi 110054, India, 2009.
    28. E.A. Buyanova, P.L. Strelets, I.A. Serova, V.A. Isupov, Bull. Acad. Sci. USSR Phys. Ser. 29 (1965) 1877, 1965.
    29. PAILYN THONGSANITGARN, ANUCHA WATCHARAPASORN, SUKANDA JIANSIRISOMBOON, ELECTRICAL AND MECHANICAL PROPERTIES OF PZT/PVDF 0–3 COMPOSITES, Surface Review and Letters, Vol. 17, No. 1 (2010) 1–7
    30. A.K. Zak, W.C. Gan , W.H. Abd. Majid , Majid Darroudi , T.S. Velayutham, Experimental and theoretical dielectric studies of PVDF/PZT nanocomposite thin films, Ceramics International 37 (2011) 1653–1660
    31. Vineet Tiwari,GeetikaSrivastava, Structural, dielectric and piezoelectric properties of 0–3 PZT/PVDF composites, Ceramics International41(2015)8008–8013
    32. Shrabanee Sen, S K Mishra, Electrical behaviour of PMN–PT–PVDF nanocomposite, J. Phys. D: Appl. Phys. 41 (2008) 165305 (7pp)
    33. Zhuo Xu, Futao Chen, Zengzhe Xi, Zhengrong Li, Linhong Cao, Yujun Feng, Xi Yao, The studies of single crystal PMN-PT68/32/polymer 1–3 composites, Ceramics International 30 (2004) 1777–1780
    34. R.I. Mahdi, W.C.Gan,N.A.Halim, T.S.Velayutham, W.H.Abd.Majid, Ferroelectric and pyroelectric properties of novel lead-free polyvinylidene fluoride-trifluoroethylene–Bi0.5Na0.5TiO3 nanocomposite thin films for sensing applications, Ceramics International41(2015)13836–13843
    35. Sang Hyun Ji, Jeong Ho Cho, Young Hun Jeong, Jong-Hoo Paik, Jon Do Yunb,Ji Sun Yun, Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications, Sensors and Actuators A 247 (2016) 316–322
    36. Sang Hyun Ji, Jeong Ho Cho, Young Hun Jeong, Jong-Hoo Paik, Jon Do Yunb,Ji Sun Yun, Poling effects on the performance of a lead-free piezoelectric nanofiber in a structural health monitoring sensor, Sensors and Actuators A 263 (2017) 633–638
    37. Takashi Nishiyama, Takayuki Sumihara, Yasutaka Sasaki, Eriko Sato, Masafumi Yamato, Hideo Horibe, Crystalline structure control of poly(vinylidene fluoride) films with the antisolvent addition method, Polymer Journal (2016), 1–4
    38. NEIL T. MCDEVITT, WILLIAM L. BAUN, Infrared absorption study of metal oxides in the low frequency region (700-240 cm-l), SpectrochimAictaa ,1 964,v ol. 20,p p. 799t o 808
    39. https://read01.com/zh-tw/m8KzQ4.html#.W1aIa9UzaM8
    40. RINALDO CRECORIO, JR. and MARCELO CESTARI, Effectd of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly (vinylidene Fluoride, Journal of Polymer Science: Part B: Polymer Physics, Vol. 32,859-870 (1994)

    QR CODE