簡易檢索 / 詳目顯示

研究生: 謝騰陞
TENG-SHENG HSIEH
論文名稱: 鈮基複合氧化物負極材料之製備及電化學性質研究
Synthesis and electrochemical performance of niobium-based composite oxide anode material for lithium-ion battery
指導教授: 郭東昊
Dong-Hau Kuo
廖世傑
Shih-Chieh Liao
口試委員: 薛人愷
Ren-Kae Shiue
柯文政
Wen-Cheng Ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 104
中文關鍵詞: 鋰離子電池鈮基氧化物負極材料三聚氰胺擬電容材料
外文關鍵詞: lithium-ion battery, niobium-based oxide, anode material, melamine, pseudocapacitive materials
相關次數: 點閱:192下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高容量、安全操作、快速充電/放電和長壽命是鋰離子電池(LIB)在大型儲能應用中的基本特性。具有快速充電/放電需求的電動汽車,這種功率型 LIB 面臨的主要挑戰是開發具有電容量和壽命要求的負極材料。目前聚焦的負極材料為石墨和Li4Ti5O12,但石墨有形成鋰樹枝狀結晶突出物形成的問題,而Li4Ti5O12則有低電容量的問題。鈮基氧化物由於擁有豐富的Nb5+/Nb4+和Nb4+/Nb3+氧化還原化學,且其理論電容量達到200-416 mAh/g,因此近年來對此類ReO3結構的氧化物研究逐漸增加。但由於其電子和離子電導率相對較低,以及穩定性差等缺點,將其落實應用仍需大量研究與分析。
    本論文以傳統的高溫固相法製備鈮基氧化物MoNb12O33,將其應用至鋰離子電池之負極材料。為了優化快速充放電性能,將對氧化物起始原料、煆燒溫度、煆燒助劑及碳源披覆等參數進行製程最適化。以Nb2O5為鈮源,MoO2與MoO3為鉬源,在空氣氣氛下,以900 ⁰C/12h的條件煆燒合成MoNb12O33,分別命名為 MNO與 M’NO。藉由定電流充放電性能測試,MNO在1C下的電容量為155 mAh/g,優於M’NO (75 mAh/g)。降低煆燒溫度為降低成本方法之一,氫氧化鋰(LiOH)可作為煆燒助劑,用於降低煆燒溫度,同時也做為摻雜物。添加鋰源後的Li-MNO,其鋰離子嵌脫行為、倍率性能及循環穩定性等電化學性質均受到影響。碳材多用於增加材料的表面電導率,為了獲得氮摻雜碳(Nitrogen-doped carbon)或氮碳披覆的Li-MNO,因此在750 ⁰C/3h的條件下熱裂解三聚氰胺,使其以氮摻雜碳(N-doped carbon)的型態披覆在Li-MNO表面。以EIS分析其表面阻抗變化,含有氮碳披覆之Li-MNO/NC,阻抗低於無氮碳披覆之Li-MNO,顯示NC塗層可以有效增加表面電導率。根據電化學性能分析結果,已優化的10% Li-MNO/NC-4負極材料在此研究中擁有最佳性能。最後,透過改變放電截止電壓,減少Nb3+還原量,可又提升容量保持率與循環壽命。


    High capacity, safe operation, fast charge/discharge and long lifetime are the essential properties of lithium-ion batteries for large-scale energy-storage applications for electric vehicles with fast charge/discharge. The major challenge for such power LIBs is to develop an improved anode electrode with the energy and lifetime requirements. The focused anode materials have been graphite and Li4Ti5O12. Graphite has the problem of the formation of Li dendrites, while Li4Ti5O12 suffers the problem of low capacity. Niobium-based oxides have been heavily studied in recent years due to the rich redox chemistry of Nb5+/Nb4+ and Nb4+/Nb3+ to enable high theoretical capacity of 200-400 mAh/g, but it has a poor rate capability resulting from relatively low electronic and ionic conductivity. The niobium-based oxides still need a lot of research and analysis for applying it on energy storage.
    In this work, niobium-based oxide material of molybdenum niobium oxide, MoNb12O33 (MNO), was prepared by solid state method as an anode material for lithium-ion battery. To optimize the fast charge-discharge performance, the parameters such as precursors, carbon coating, calcination temperature, and crystallization aid were discussed in this thesis. The precursors of Nb2O5 and MoO¬2 (or MoO3) had been used as the sources of niobium and molybdenum, respectively, for MNO (or M’NO). Initially, oxide precursors were homogeneously mixed and then calcined at 900 ⁰C for 12h in air with a heating rate of 10 ⁰C /min. As shown by galvanostatic discharge-charge performance, the capacity of MNO was found to be 155 mAh/g at 1C, which was higher compared to M’NO of 75 mAh/g at 1C. Due to relatively high calcination temperature, lithium hydroxide (LiOH) was utilized to lower the calcination temperature and also acted as a dopant. Accordingly, the results showed that the lithium-ion intercalation behavior, C-rate performance, and cycle stability were affected by the addition of LiOH. As carbon material has been utilized to enhance the surface conductivity of anode material, melamine, a nitrogen-based organic compound that could form nitrogen-doped carbon (NC) by pyrolysis process, was considered in this work. To obtain NC-coated Li-MNO or Li-MNO/NC, melamine was mixed homogeneously with Li-MNO, then the mixture was pyrolyzed at 750 ⁰C for 3h under Ar atmosphere with a heating rate of 5 ⁰C /min. According to electrochemical impedance spectroscopy (EIS) analysis, the resistance of Li-MNO/NC was found to be lower than that of Li-MNO, which proved that the NC coating could significantly improve the conductivity of the resulted anode material. Briefly, the optimized anode material of 10% Li-MNO/NC-4 exhibited the best performance in this work, as supported with various electrochemical properties. To further improve both capacity retention and cycle lifetime, the discharge cut-off voltage and the Nb3+ content in MNO were optimized.

    中文摘要 I Abstract II 致謝 IV 圖目錄 VIII 表目錄 X 第1章、 緒論 1 1.1前言 1 1.2 研究動機與目的 2 第2章、 文獻回顧與動機 4 2.1 鋰離子電池負極材料 4 2.1.1 嵌入型(Insertion-type)材料 5 2.1.2 合金型(Alloying-type)材料 6 2.1.3 轉化型(Conversion-type)材料 6 2.2 鈮基氧化物的儲鋰機制與研究 8 2.2.1 五氧化二鈮Nb2O5 10 2.2.2 鎢鈮氧化物(W-Nb-O) 12 2.2.2.1 高體積能量密度Nb16W5O55與Nb18W16O93 13 2.2.2.2 Nb18W8O69 15 2.2.2.3 WNb12O33 16 2.2.2.4 Nb12W11O63 20 2.2.2.5 Mo3Nb14O44 22 2.3 擬電容材料 (Pseudocapacitive material) 23 第3章、 研究方法與步驟 25 3.1 實驗材料與規格 25 3.2 實驗設備 26 3.3 實驗步驟 27 3.3.1 合成MNO 27 3.3.2 合成Li-MNO 27 3.3.3 Li-MNO/NC複合材料 28 3.4 分析儀器介紹 29 3.4.1 X光繞射儀 (X-Ray Diffractometer, XRD) 29 3.4.2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 29 3.4.3 感應耦合電漿質譜分析儀 (Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 29 3.4.4 X射線光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 30 3.5 鈕扣電池製作與電化學特性分析 30 3.5.1 負極極板製備 30 3.5.2 鈕扣電池組裝 31 3.5.3 電化學性能測試 32 3.5.4 循環伏安法 33 3.5.5 電化學阻抗頻譜法量測 (Electrochemical Impedance Spectroscopy, EIS) 33 第4章、 結果與討論 34 4.1 探討不同鉬源對MoNb12O33的影響與分析 34 4.1.1 探討不同鉬源之MoNb12O33其XRD分析 35 4.1.2 探討不同鉬源之MoNb12O33其SEM及EDS分析 37 4.1.3 探討不同鉬源之MoNb12O33其充放電分析 38 4.1.4 探討不同鉬源之MoNb12O33其EIS分析 41 4.1.5 探討不同鉬源之MoNb12O33其CV分析 43 4.2 添加鋰源對MNO負極材料的影響 46 4.2.1 添加鋰源之MNO其XRD分析 46 4.2.2 添加鋰源之MNO其SEM分析 48 4.2.3 添加鋰源之MNO其ICP組成分析 49 4.2.4 添加鋰源之MNO其充放電分析 50 4.2.5 添加鋰源之MNO其EIS分析 53 4.2.6 添加鋰源之MNO其CV分析 56 4.3 碳氮披覆對Li-MNO負極材料的影響 59 4.3.1 碳氮披覆之Li-MNO其XRD分析 60 4.3.2 碳氮披覆之Li-MNO其SEM分析 62 4.3.3 碳氮披覆之Li-MNO其XPS分析 67 4.3.4 碳氮披覆之Li-MNO其充放電分析 73 4.3.5 碳氮披覆之Li-MNO其EIS分析 76 4.3.6 碳氮披覆之Li-MNO其CV分析 78 4.4 半電池在1C/1C電流速率下之循環穩定性分析 81 第5章、結論 84 第6章、參考文獻 87

    [1] Xu, K. (2019). A Long Journey of Lithium: From the Big Bang to Our Smartphones. Energy & Environmental Materials, 2(4), 229-233.
    [2] Tomaszewska, A., Chu, Z., Feng, X., O'Kane, S., Liu, X., Chen, J., Wu, B. (2019). Lithium-ion battery fast charging: A review. ETransportation, 1, 100011.
    [3] Zhu, G. L., Zhao, C. Z., Huang, J. Q., He, C., Zhang, J., Chen, S., Zhang, Q. (2019). Fast charging lithium batteries: recent progress and future prospects. Small, 15(15), 1805389.
    [4] Opra, D. P., Gnedenkov, S. V., & Sinebryukhov, S. L. (2019). Recent efforts in design of TiO2 (B) anodes for high-rate lithium-ion batteries: a review. Journal of Power Sources, 442, 227225.
    [5] N. Takami, K. Ise, Y. Harada, T. Iwasaki, T. Kishi, and K. Hoshina, High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications, Journal of Power Sources, 396 (2018) 429-436.
    [6] Deng, Q., Fu, Y., Zhu, C., & Yu, Y. (2019). Niobium‐based oxides toward advanced electrochemical energy storage: recent advances and challenges. Small, 15(32), 1804884.
    [7] Griffith, K. J., Wiaderek, K. M., Cibin, G., Marbella, L. E., & Grey, C. P. (2018). Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature, 559(7715), 556-563.
    [8] Ferg, E., Gummow, R. D., De Kock, A., & Thackeray, M. M. (1994). Spinel anodes for lithium‐ion batteries. Journal of the Electrochemical Society, 141(11), L147.
    [9] Palacin, M. R. (2009). Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 38(9), 2565-2575.
    [10] Wu, F., Maier, J., & Yu, Y. (2020). Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 49(5), 1569-1614.
    [11] Yang, Y., & Zhao, J. (2021). Wadsley–Roth crystallographic shear structure niobium‐based oxides: Promising anode materials for high‐safety lithium‐ion batteries. Advanced Science, 2004855.
    [12] Cava, R. J., Murphy, D. W., & Zahurak, S. M. (1983). Lithium insertion in Wadsley‐Roth phases based on niobium oxide. Journal of the Electrochemical Society, 130(12), 2345.
    [13] Cava, R. J., Santoro, A., Murphy, D. W., Zahurak, S., & Roth, R. S. (1982). The structures of lithium-inserted metal oxides: LiReO3 and Li2ReO3. Journal of Solid State Chemistry, 42(3), 251-262.
    [14] Kodama, R., Terada, Y., Nakai, I., Komaba, S., & Kumagai, N. (2006). Electrochemical and in situ XAFS-XRD investigation of Nb2O5 for rechargeable lithium batteries. Journal of The Electrochemical Society, 153(3), A583.
    [15] Kim, J. W., Augustyn, V., & Dunn, B. (2012). The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Advanced Energy Materials, 2(1), 141-148.
    [16] Roth, R. S., & Wadsley, A. D. (1965). Multiple phase formation in the binary system Nb2O5–WO3. I. Preparation and identification of phases. Acta Crystallographica, 19(1), 26-32.
    [17] Reichman, B., & Bard, A. J. (1980). Electrochromism at niobium pentoxide electrodes in aqueous and acetonitrile solutions. J. Electrochem. Soc, 127(1), 241-242.
    [18] Griffith, K. J., & Grey, C. P. (2020). Superionic Lithium Intercalation through 2× 2 nm2 Columns in the Crystallographic Shear Phase Nb18W8O69. Chemistry of Materials, 32(9), 3860-3868.

    [19] Saritha, D., Pralong, V., Varadaraju, U. V., & Raveau, B. (2010). Electrochemical Li insertion studies on WNb12O33—A shear ReO3 type structure. Journal of Solid State Chemistry, 183(5), 988-993.
    [20] Yan, L., Lan, H., Yu, H., Qian, S., Cheng, X., Long, N., & Shu, J. (2017). Electrospun WNb12O33 nanowires: superior lithium storage capability and their working mechanism. Journal of Materials Chemistry A, 5(19), 8972-8980.
    [21] Zhu, X., Xu, J., Luo, Y., Fu, Q., Liang, G., Luo, L., & Zhao, X. S. (2019). MoNb12O33 as a new anode material for high-capacity, safe, rapid and durable Li+ storage: structural characteristics, electrochemical properties and working mechanisms. Journal of Materials Chemistry A, 7(11), 6522-6532.
    [22] Ma, X. H., Cheng, L., Li, L. L., Cao, X., Ye, Y. Y., Wei, Y. Y., Dai, J. M. (2020). Influence of cut-off voltage on the lithium storage performance of Nb12W11O63 anode. Electrochimica Acta, 332, 135380.
    [23] Li, R., Liang, G., Zhu, X., Fu, Q., Chen, Y., Luo, L., & Lin, C. (2021). Mo3Nb14O44: a new Li+ container for high‐performance electrochemical energy storage. Energy & Environmental Materials, 4(1), 65-71.
    [24] Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media.
    [25] Chodankar, N. R., Pham, H. D., Nanjundan, A. K., Fernando, J. F., Jayaramulu, K., Golberg, D., Dubal, D. P. (2020). True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small, 16(37), 2002806.
    [26] Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7(5), 1597-1614.

    [27] Wang, J., Polleux, J., Lim, J., & Dunn, B. (2007). Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. The Journal of Physical Chemistry C, 111(40), 14925-14931.
    [28] Zhou, L., Yang, L., Yuan, P., Zou, J., Wu, Y., & Yu, C. (2010). α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. The Journal of Physical Chemistry C, 114(49), 21868-21872.
    [29] Nakayama, M., Ikuta, H., Uchimoto, Y., & Wakihara, M. (2003). Study on the AC Impedance Spectroscopy for the Li Insertion Reaction of LixLa1/3NbO3 at the Electrode− Electrolyte Interface. The Journal of Physical Chemistry B, 107(38), 10603-10607.
    [30] Han, J. T., Huang, Y. H., & Goodenough, J. B. (2011). New anode framework for rechargeable lithium batteries. Chemistry of Materials, 23(8), 2027-2029.
    [31] Zhang, J., Nie, N., Liu, Y., Wang, J., Yu, F., Gu, J., & Li, W. (2015). Boron and nitrogen codoped carbon layers of LiFePO4 improve the high-rate electrochemical performance for lithium ion batteries. ACS applied materials & interfaces, 7(36), 20134-20143.
    [32] Su, X., Huang, T., Wang, Y., & Yu, A. (2016). Synthesis and electrochemical performance of nano-sized Li4Ti5O12 coated with boron-doped carbon. Electrochimica Acta, 196, 300-308.
    [33] Geng, H., Zhou, Q., Pan, Y., Gu, H., & Zheng, J. (2014). Preparation of fluorine-doped, carbon-encapsulated hollow Fe3O4 spheres as an efficient anode material for Li-ion batteries. Nanoscale, 6(7), 3889-3894.
    [34] Zhao, L., Hu, Y. S., Li, H., Wang, Z., & Chen, L. (2011). Porous Li4Ti5O12 coated with N‐doped carbon from ionic liquids for Li‐ion batteries. Advanced Materials, 23(11), 1385-1388.

    [35] Guo, M., Wang, S., Ding, L. X., Zheng, L., & Wang, H. (2015). Synthesis of novel nitrogen-doped lithium titanate with ultra-high rate capability using melamine as a solid nitrogen source. Journal of Materials Chemistry A, 3(20), 10753-10759.
    [36] Öztürk, A., & Yurtcan, A. B. (2021). Preparation and characterization of melamine-led nitrogen-doped carbon blacks at different pyrolysis temperatures. Journal of Solid State Chemistry, 296, 121972.

    無法下載圖示 全文公開日期 2024/07/20 (校內網路)
    全文公開日期 2024/07/20 (校外網路)
    全文公開日期 2024/07/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE