簡易檢索 / 詳目顯示

研究生: Arif Cahyo Imawan
Arif Cahyo Imawan
論文名稱: 通過原子轉移自由基聚合技術將矽表面接枝聚丙烯酸和聚β-羧乙基丙烯酸酯並應用於鋰離子電池的負極材料
The Grafting of the Polyacrylic acid and Poly β-carboxyethyl acrylate on the Silicon Surface Via Atomic Transfer Radical Polymerization (ATRP) Technique and Their Application as Anode Material of Lithium Ion Battery
指導教授: 王復民
Fu-Ming Wang
口試委員: 郭俞麟
Yu-Lin Kuo
王丞浩
Chen-Hao Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 110
中文關鍵詞: 聚丙烯酸β-羧乙基丙烯酸酯原子轉移自由基反應鋰離子電池
外文關鍵詞: acrylic acid, β-carboxyethyl acrylate, silicon, atomic transfer radical polymerization, Li ion battery
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚丙烯酸(AA)與β-羧乙基丙烯酸酯(CEA)以原子轉移自由基過程的技術接枝在矽的表面上以及其技術應用於鋰離子電池的負極材料已有許多發表。本研究主要是著重在AA與CEA的高分子聚合物接枝於矽的表面,分析這些接枝的高分子聚合物在矽負極的影響,以及黏合劑與矽的顆粒大小所造成的影響。
    為了接枝AA與CEA至矽的表面,本研究首先將矽使用氟化氫蝕刻矽的表面,接著ATRP的起始劑會透過氫矽化反應接枝在矽的表面,而ATRP的最後一步驟會以Cu(I)-Bipy催化並完成反應。為了分析電池性能,本研究使用充放電分析、循環伏安法以及電話學阻抗分析等技術。羧甲基纖維素(CMC)以及聚二氟亞乙烯(PVdf)作為本研究的黏著劑,同時,我們也將探討黏著劑對於矽的顆粒大小在微米以及奈米等級之影響。
    根據研究結果,我們認為CMC黏著劑與PVdf黏著劑相比,有較好的穩定性。此外,當矽的顆粒微奈米等級時,也有較好的循環表現。當AA接枝於矽負極時,會有增加電容率,但在長時間的循環下缺乏穩定度。而CEA接枝於矽負極時,除了可以增加電容率外,亦可有高穩定性。綜合本研究的所有結果,矽-CEA於0.1奈米時會是最佳的電極材料因為矽-CEA可以在200圈充放電後電容為1188 mAh g-1且每一圈僅減少0.27%的電容率。


    The grafting of the poly acrylic acid (AA) and poly β-carboxyethyl acrylate (CEA) on the silicon surface via atomic transfer radical polymerization (ATRP) technique and their application as anode material of lithium ion battery has been conducted. This research’s purpose is to graft the AA and CEA polymer on the surface of the silicon and to analysis the effect of this grafted polymers on the silicon anode performance. Moreover, the effect of the binder and silicon size have been carried out.
    To graft the AA and CEA, the silicon was etched by using the HF. Then, the ATRP initiator was attached on the silicon surface via hydrosilylation reaction. The last step was ATRP reaction catalyzed by Cu(I)-Bipy. To analysis the battery performance, the charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used. Carboxymethyl cellulose (CMC) and polyvinylidene fluoride (PVdF) binders were used to analysis the effect of the binder, while silicon with macro (⁓325 nm) and nano (<100 nm) were used to analysis the effect of the silicon sizes.
    The result confirmed that the CMC binder had better stability performance compared with PVdF binder. Moreover, the silicon with nano size gave a better long cycle performance compared with macro size. The presence of AA on the silicon anode enhanced the capacity, but it had poor stability during long cycle. While, the presence of the CEA enhanced the capacity and gave a higher stability. From the analysis, Si-CEA0.1 nano was the best electrode among the other since Si-CEA was able to deliver 1188 mAh g-1 after 200 cycles with capacity loss 0.27% per cycle.

    Table of Content Cover I Master’s Thesis Recommendation Form II Qualification Form by Master’s Degree Examination Commitee III ABSTRACT IV 摘要 V Acknowledgment VI Table of Content VII List of Figure IX CHAPTER I INTRODUCTION 1 I.1. Background 1 I.2. Problem Formulation 4 I.3. Research Purposes 5 CHAPTER II LITERATURE REVIEW 6 II.1. Lithium-Ion Battery Components 6 II.1.1. Cathode 6 II.1.2 Anode 9 II.1.3 Electrolyte 13 II.1.4 Separator 14 II.2. Silicon anode and modified silicon anode 16 II.2.1 Silicon anode 16 II.2.2 Fundamental Challenges and Solutions 16 II.2.3 Modified silicon anode 27 II.3 The Modification of Silicon Surface with Polymer Via ATRP Techniques 28 II.3.1. Silicon etching and H-terminated silicon 28 II.3.2. Hydrosilylation reaction 30 II.3.3. Free radical and ATRP polymerizations process 33 II.3.4 Acrylic Acid (AA) and 2-carboxyethyl acrylate (CEA) 42 CHAPTER III RESEARCH METHODOLOGY 45 III.1 Research Design 45 III.2. Materials 49 III.3. Equipments 49 III.4. Experimental Procedure 50 III.4.1. The synthesis of the silicon polymer via ATRP technique 50 III.4.2. The electrode fabrication 51 III.4.3. The coin cell assembling 51 III.4.4. Battery performance 52 CHAPTER IV RESULT AND DISCUSSION 53 IV.1. Silicon Surface Modification with Polymer Synthesized Via Atomic Transfer Radical Polymerization (ATRP) Technique 54 IV.1.1. The etching and hydrosilylation processes of the silicon 55 IV.1.2. The polymer growth on the surface of the silicon via atomic transfer radical polymerization (ATRP) reaction 56 IV.2. The Electrode Slurry and Coating 68 IV.3. Battery Performance 73 IV.3.1 The effect of the binder types 73 IV.3.2 The effect of the polymer types 80 IV.3.3 The effect of the silicon size 91 CHAPTER V CONCLUSION 100 References 102

    References
    1. V. Kumaravel and A. A. Wahab, 2018, A Short Review on Hydrogen, Biofuel, and Electricity Production Using Seawater as a Medium, Energy Fuels, 32, 6423-6437.
    2. H. Ibrahim, A. Ilinca and J. Perron, 2008, Energy storage systems-characteristics and comparisons, Renew. Sust. Energy Rev. 12, 1221-1250.
    3. N. S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y. K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, 2012, Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors, Angew. Chem., Int. Ed. Engl. 51, 9994-10024.
    4. G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim and H. J. Sohn, 2011, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci. 4, 1986–2002.
    5. M.M. Thackeray, C. Wolverton, and E.D. Isaacs, 2012, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci. 5, 7854-7863.
    6. Y. Jin, B. Zhu, Z. Lu, N. Liu and J. Zhu, 2017, Challenges and Recent Progress in the Development of Si Anodes for Lithium-Ion Battery, Adv. Energy Mater. 7, 1700715.
    7. X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, 2012, Size-Dependent Fracture of Silicon Nanoparticles During Lithiation, ACS nano 6 (2), 1522–1531.
    8. C. H. Yim, F. M. Courtel and Y. Abu-Lebdeh, 2013, A high capacity silicon–graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders, J. Mater. Chem. A 1, 8234-8243.
    9. H. Wu, G. Chan, J. W. Choi, Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. Hu and Y. Cui, 2012, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control, Nat. Nanotechnol. 7, 310-315.
    10. Wang, M.S., Wang, Z.Q., Jia, R., Yang, Y., Zhu, F.Y., Yang, Z.L., Huang, Y., Li, X., and Xu, W., 2019, Facile electrostatic self-assembly of silicon/reduced graphene oxide porous composite by silica assist as high performance anode for Li-ion battery, Appl. Surf. Sci., 456, 379-389.
    11. Greco, E., Nava, G., Fathi, R., Fumagali, F., Del Rio-Castillo, A.E., Ansaido, A., Monaco, S., Bonaccorso, F., Pellegrini, V., and Di Fonzo, F., 2017, Few-layer graphene improves silicon performance in Li-ion battery anodes, J. Mater. Chem. A., 5, 19306.
    12. Joe, M., Han, Y.K., Lee, K.R., Mizuseki, H., and Kim, S., 2014, An ideal polymeric C60 coating on a Si electrode for durable Li-ion batteries, Carbon, 1140-1147.
    13. N. Akkilic and W. M. de Vos, 2015, Responsive polymer brushes for biomedical applications, Wood head publishing, 119-146.
    14. C. C. Nguyen, T. Yoon, D. M. Seo, P. Guduru, and B. L. Lucht, 2016, Systematic Investigation of Binders for Silicon Anodes: Interactions of Binder with Silicon Particles and Electrolytes and Effects of Binders on Solid Electrolyte Interphase Formation, ACS Appl. Mater. Interfaces 8, 12211−12220.
    15. G. G. Láng, M. Ujvári, T. A. Rokob, and G. Inzelt, 2006, The brush model of the polymer films—analysis of the impedance spectra of Au,Pt|poly(o-phenylenediamine) electrodes, Electrochim. Acta, 51, 1680-1694.
    16. J. Bisquert, G. G. Belmonte, F. F. Santiago, N. S. Ferriols, P. Bogdanoff, and E. C. Pereira, 2000, Doubling Exponent Models for the Analysis of Porous Film Electrodes by Impedance. Relaxation of TiO2 Nanoporous in Aqueous Solution, J. Phys. Chem. B 10, 2287–2298
    17. P. H. Nguyen and G. Paasch, 1999, Transfer matrix method for the electrochemical impedance of inhomogeneous porous electrodes and membranes, J. Electroanal. Chem. 460, 63-79.
    18. B. Scrosati and J. Garche, 2010, Lithium batteries: Status, prospects and future, J. Power Sources 195 2419–2430
    19. M. S. Whittingham, 2004, Lithium Batteries and Cathode Materials, Chem. Rev. 104 4271-4302
    20. W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim and J. Cho, 2015, Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries, Angew.Chem.Int.Ed. 54 4440–4457
    21. J. P. Pender, G. Jha, D. H. Youn, J. M. Ziegler, I. Andoni, E. J. Choi, A. Heller, B. S. Dunn, P. S. Weiss, R. M. Penner, and C. B. Mullins, 2020, Electrode Degradation in Lithium-Ion Batteries, ACS nano 14, 1243−1295.
    22. H. Wang, Y. I. Jang, B. Huang, D. R. Sadoway and Y. M. Chiang, 1999, TEM Study of Electrochemical Cycling-Induced Damage and Disorderin LiCoO2 Cathodes for Rechargeable Lithium Batter, J. Electrochem. Soc. 146 473-480.
    23. J. K. Ngala, N. A. Chernova, M. Ma, M. Mamak, P. Y. Zavalij and M. S. Whittingham, 2003, The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound, J. Mater. Chem. 14 214-220.
    24. J. R. G. Ceder and A. V. D. Ven, 2001, Layered-to-Spinel Phase Transition in LixMnO2, Electrochem. Solid-State Lett. 4 78-81.
    25. R. J. Gummow, A. d. Kock and M. M. Thackeray, 1994, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics 69 59-67.
    26. Y. Tang, F. Huang, H. Bi, Z. Liu and D. Wan, 2012, Highly conductive three-dimensional graphene for enhancing the rate performance of LiFePO4 cathode, J. Power Sources 203 130-134.
    27. Z. Zhang and P. Ramada, 2013, Lithium ion battery systems and technology, Springer, 319-357.
    28. M. Ishikawa and M. Morita, 2009, Lithium science and technology: Current issues of metallic lithium anode, Springer, 297-331.
    29. M. Winter, K. C. Moeller and J. O. Besenhard, 2009, Lithium science and technology: Carbonaceous and graphitic anodes, Springer, 144-180.
    30. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Z. Jiang, 2010, Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity, J. Am. Chem. Soc. 1 46-47.
    31. C. P. Sandhya, B. John and C. Gouri, 2014, Lithium titanate as anode material for lithium-ion cells: a review, Ionics 20 601–620.
    32. A. Wang, S. Kadam, H. Li, S. Shi and Y. Qi, 2018, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Comput. Mater. 4 1-15.
    33. I. Yoon, D. P. Abraham, B. L. Lucht, A. F. Bower and P. R. Guduru, 2016, In Situ Measurement of Solid Electrolyte Interphase Evolution on Silicon Anodes Using Atomic Force Microscopy, Adv. Energy Mater. 6 1600099.
    34. M. Nazri, 2009, Liquid electrolytes: Some theoretical and practical aspects, Springer, 509-527.
    35. Z. Xue, Z. Zhang and S. S. Zhang, 2015, Rechargeable Batteries: Manufacture and Surface Modification of Polyolefin Separator, 337-352.
    36. V. Deimede and C. Elmasides, 2000, Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments, Energy Technol. (Weinheim, Ger.) 5 453-468.
    37. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B. W. Sheldon and J. Wu, 2014, Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review, Adv. Energy Mater. 4, 1300882.
    38. S. B. Son, B. Kappes and C. Ban, 2015, Surface Modification of Silicon Anodes for Durable and High-Energy Lithium-Ion Batteries, Isr. J. Chem. 55, 558– 569.
    39. X. Zhao, S. Niketic, C. H. Yim, J. Zhou, J. Wang and Y. Abu-Lebdeh, 2018, Revealing the Role of Poly(vinylidene fluoride) Binder in Si/Graphite Composite Anode for Li-Ion Batteries, ACS Omega 3, 11684−11690.
    40. J. Yoon, D. X. Oh, C. Jo, J. Lee and D. S. Hwang, 2014, Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking, Phys. Chem. Chem. Phys. 16, 25628-25635.
    41. B. Lu, Y. Song, Q. Zhang, J. Pan, Y. T. Cheng and J. Zhang, 2016, Voltage hysteresis of lithium ion batteries caused by mechanical stress, Phys.Chem.Chem.Phys. 18 4721-4727.
    42. M. J. Chon, V. A. Sethuraman, A. McCormick, V. Srinivasan, and P. R. Guduru, 2011, Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation of Crystalline Silicon, Phys. Rev. Lett. 107 045503.
    43. V. A. Sethuraman, A. Nguyen, M. J. Chon, S. P. V. Nadimpalli, H. Wang, D. P. Abraham, A. F. Bower, V. B. Shenoy and P. R. Guduru, 2013, Stress Evolution in Composite Silicon Electrodes during Lithiation/Delithiation, J. Electrochem. Soc. 160 739-746.
    44. V. A. Sethuraman, M. J. Chon, M. Shimsha, V. Srinivasan and P. R. Guduru, 2010, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources 195 5062–5066.
    45. V. A. Sethuraman, V. Srinivasan, A. F. Bower and P. R. Guduru, 2010, In Situ Measurements of Stress-Potential Coupling in Lithiated Silicon, J. Electrochem. Soc. 157 1253-1261.
    46. Y. Xu, Y. Zhu, F. Han, C. Luo and C. Wang, 2015, 3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li‐Ion Batteries, Adv. Energy Mater. 5 1400753.
    47. S. L. Chou, J. Z. Wang, M. Choucair, H. K. Liu, J. A. Stride and S. X. Dou, 2010, Enhanced reversible lithium storage in a nanosize silicon/graphene composite, Electrochem. Commun. 12 303–306.
    48. V. Pandarus, R. Ciriminna, G. Gingras, F. Béland, S. Kaliaguine and M. Pagliaro, 2019, Heterogeneous hydrosilylation reaction catalyzed by platinum complexes immobilized on bipyridineperiodic mesoporous organosilicas, Dalton Trans. 48, 5534–5540.
    49. Y. Nakajima and S. Shimada, 2015, Hydrosilylation reaction of olefins: recent advances and perspectives, RSC Adv. 5, 20603–20616.
    50. J. Stein, L. N. Lewis, Y. Gao and R. A. Scott, 1999, In Situ Determination of the Active Catalyst in Hydrosilylation Reactions Using Highly Reactive Pt(0) Catalyst Precursors, J. Am. Chem. Soc. 121, 3693-3703.
    51. R. H. Crabtree, 2014, The Organometallic Chemistry of the Transition Metals, (sixth ed), Wiley, New Jersey.
    52. T. K. Meister, K. Riener, P. Gigler, J. Stohrer, W. A. Herrmann, and F. E. Kühn, 2016, Platinum Catalysis Revisited-Unraveling Principles of Catalytic Olefin Hydrosilylation, ACS Catal. 6, 1274−1284.
    53. H. Zhao, Z. Jia, W. Yuan, H. Hu, Y. Fu, G. L. Baker, and G. Liu, 2015, Fumed Silica-Based Single-Ion Nanocomposite Electrolyte for Lithium Batteries, ACS Appl. Mater. Interfaces, 7, 19335−19341.
    54. C. E. Carraher, 2018, Carraher’s polymer chemistry, (10 ed), CRC Press, London.
    55. G. Panzarasa, S. Aghion, G. Marra, A. Wagner, M. O. Liedke, M. Elsayed, R. Krause-Rehberg, R. Ferragut, G. Consolati, 2017, Probing the Impact of the Initiator Layer on Grafted-from Polymer Brushes: A Positron Annihilation Spectroscopy Study, Macromolecules, 50, 5574-5581.
    56. R. M. Broyer, G. M. Quaker and H. D. Maynard, 2008, Designed Amino Acid ATRP Initiators for the Synthesis of Biohybrid Materials, J. Am. Chem. Soc. 130, 1041-1047.
    57. W. Yang and F. Zhou, 2017, Polymer brushes for antibiofouling and lubrication, Biosurf. Biotribol, 3, 97-114.
    58. K. Matyjaszewski and J. Xia, 2001, Atom Transfer Radical Polymerization, Chem. Rev. 101, 9, 2921-2990.
    59. K. Matyjaszewski, 2012, Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 45, 10, 4015-4039.
    60. R. F. T. Stepto, 2009, Dispersity in Polymer Science, Pure Appl. Chem. 2, 351–353.
    61. K. Matyjaszewski, 1996, The importance of exchange reactions in controlled/living radical polymerization in the presence of alkoxyamines and transition metals, Macromol. Symp. 1, 47-61.
    62. Z. Wang, J. Yan, T. Liu, Qi. Wei, S. Li, M. Olszewski, J. Wu, J. Sobieski, M. Fantin, M. R. Bockstaller and K. Matyjaszewski, 2019, Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration, ACS Macro Lett. 7, 859-864.
    63. Z. Xue, D. Heb and X. Xie, 2015, Iron-catalyzed atom transfer radical polymerization, Polym. Chem. 6, 1660–1687.
    64. M. Sunjuk, A. S. Abu-Surrah, K. A. A. Safieh, A. K. Qaroush, F. M. Al-Qaisi, 2017, γ-Diimine palladium(II) based complexes mediated polymerization of methyl methacrylate, Arabian J. Chem. 10, S1209–S1215.
    65. J. Yan, X. Pan, Z. Wang, Z. Lu, Y. Wang, L. Liu, J. Zhang, C. Ho, M. R. Bockstaller and K. Matyjaszewski, 2017, A Fatty Acid-Inspired Tetherable Initiator for Surface-Initiated Atom Transfer Radical Polymerization, Chem. Mater. 29, 4963−4969.
    66. S. L. Baker, H. Murata, B. Kaupbayeva, A. Tasbolat, K. Matyjaszewski, and A. J. Russell, 2019, Charge-Preserving Atom Transfer Radical Polymerization Initiator Rescues the Lost Function of Negatively Charged Protein−Polymer Conjugates, Biomacromolecules, 20, 2392−2405.
    67. A. Pourjavadi, F. Seidi, P. E. Jahromi, H. Salimi, S. Roshan, A. Najafi and N. Bruns, 2012, Use of a novel initiator for synthesis of amino-end functionalized polystyrene (NH2-PS) by atom transfer radical polymerization, J. Polym. Res. 19, 9752.
    68. S. Lanzalaco, M. Fantin, O. Scialdone, A. Galia, A. A. Isse, A. Gennaro and K. Matyjaszewski, 2017, Atom Transfer Radical Polymerization with Different Halides (F, Cl, Br, and I): Is the Process “Living” in the Presence of Fluorinated Initiators?, Macromolecules, 50 192-202.
    69. C. Fang, M. Fantin, X. Pan, K. d. Fiebre, M. L. Coote, K. Matyjaszewski, and P. Liu, 2019, Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP), J. Am. Chem. Soc. 141, 7486−7497.
    70. W. Bauer, 2000, Kirk‐Othmer Encyclopedia of Chemical Technology: Acrylic acid and derivatives, John Wiley and Sons, 342-369.
    71. R. A. Orwoll and Y. S. Chong, 1998, Polymer data handbook: acrylic acid, oxford university press, 252-253.
    72. N. Akkilic and W. M. de Vos, 2015, Responsive polymer brushes for biomedical applications, Wood head publishing, 119-146.
    73. A. K. Tripathi, J. Vossoughi, and D. C. Sundberg, 2015, Partitioning of 2‑Carboxyethyl Acrylate between Water and Vinyl Monomer Phases Applied to Emulsion Polymerization: Comparisons with Hydroxy Acrylate and Other Vinyl Acid Functional Monomers, Ind. Eng. Chem. Res. 54, 2447−2452.
    74. E. Pietrzak, P. Wiecinska and M. Szafran, 2016, 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina, Ceram. Int. 42 13682–13688.
    75. Anonym, 2020, Sigma-aldrich: acrylic acid, https://www.sigmaaldrich.com/catalog/product/mm/800181?lang=en®ion=TW (access on 1st May 2020).
    76. Anonym, 2020, Sigma-aldrich: 2-carboxyethyl acrylate, https://www.sigmaaldrich.com/catalog/product/aldrich/552348?lang=en®ion=TW (access on 1st May 2020).
    77. M. Fantin, A. A. Isse, A. Venzo, A. Gennaro and K. Matyjaszewski, 2016, Atom Transfer Radical Polymerization of Methacrylic Acid: A Won Challenge, J. Am. Chem. Soc. 138, 7216−7219.
    78. D. Shao, D. Tang, Y. Mai and L. Zhang, 2013, Nanostructured silicon/porous carbon spherical composite as a high capacity anode for Li-ion batteries, J. Mater. Chem. A 1, 15068.
    79. M. K. Datta and P. N. Kumta, 2009, In situ electrochemical synthesis of lithiated silicon–carbon based composites anode materials for lithium ion batteries, J. Power Sources 194, 1043–1052.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE