簡易檢索 / 詳目顯示

研究生: 龔柏璁
Gong Bo-Cong
論文名稱: 利用氨化聚偏氟乙烯作為多硫離子化學吸附質應用於鋰硫電池之研究
Suppressing the Polysulfide Shuttle by Ammoniated PVDF as Additive for Lithium-Sulfur Batteries
指導教授: 何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
口試委員: 何郡軒
Jinn-Hsuan Ho
江佳穎
Chia-Ying Chiang
鄧熙聖
His-Sheng Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 134
中文關鍵詞: 鋰硫電池氨化反應多硫離子
外文關鍵詞: Lithium-sulfur batteries, Ammoniated PVDF, Polysulfide ion shuttle
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文主要探討高分子添加劑應用於鋰硫電池(Lithium-sulfur battery, LSB)中抑制其多硫離子穿梭效應(Polysulfide shuttle effect)。
    研究細項分為三部分,第一部分為活性物質有無經過宿主化處理(Housing treatment),研究結果顯示經過宿主化處理的活性物質有較佳的電容量表現;第二部分為高分子添加劑之鑑定與分析,透過取代反應將電池材料中常用的聚偏氟乙烯(Poly(vinylidene fluoride), PVDF)部分官能基取代為含氮基團(Nitrogen group)或含氧基團(Oxygen group),並於分析結果中確認了反應置換性與其電性特徵的改變。第三部分為將高分子添加劑使用於鋰硫電池中使用,實驗結果顯示,在少量添加的條件下即可使電池之電容維持率提升,本研究透過X光光電子能譜(X-ray photoelectron spectroscopy, XPS)確認了碳硫複合活物與高分子添加劑之間的鍵結關係,也透過電化學交流電阻抗頻譜(Electrochemical impedance spectroscopy, EIS)分析得多硫離子濃差分佈(Polysulfide concentration profile)與鋰離子在活物表面電荷轉移(Interface charge transfer)的關係,實驗最後以傳統陰極材料鋰化鎳錳鈷氧化物(Lithium nickel manganese cobalt oxide)並搭配此高分子添加劑驗證其效能。


    In this study, We investigate the amine modified poly(vinylidene fluoride) (N-PVDF) as functional additive for suppressing of polysulfide ion shuttling effect in lithium-sulfur batteries. We divide this research into three parts. Part 1. Active materials synthesis and characteristics: The active materials which prepared by two different method, directly mixing or melt-diffusion. Part 2. Amine modified PVDF synthesis and characteristics: The experiment method, functional group analysis, electric property, structure and morphology were discussed in this section. Part 3. PVDF-N as functional additive for lithium-sulfur batteries: The device performance, physical mechanism study and electrochemical analysis were performed to discuss the phenomenon inside the battery operation condition.
    We also applied this material to classic lithium ion battery which consist of NMC532 as cathode material. The results also showed that the electric property from PVDF-N can also improve the overcharged stability of NMC532 based half cell.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第1章 緒論 1 1-1 前言 1 1-2 鋰硫電池 3 第2章 文獻回顧 6 2-1 鋰硫電池複合材料 6 2.1.1 碳硫複合材料 6 2.1.2 融熔擴散法 6 2-2 正極添加物 9 2.2.1 無機物質 9 2.2.2 有機物質 13 2.2.3 雜原子物質 18 第3章 實驗方法 20 3-1 實驗設備 20 3-2 實驗藥品與器材 21 3-3 實驗步驟 22 3-3-1 碳硫活物 22 3-3-2 PVDF氨化修飾 23 3-3-3 漿體製備與電池組裝 24 3-4 材料鑑定與分析 26 3-4-1 接觸角量測儀 (Contact Angle) 26 3-4-2 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FESEM) 26 3-4-3 紫外線-可見光吸收光譜( UV-Vis spectrometer) 27 3-4-4 X光繞射分析儀(X-ray diffraction, XRD) 28 3-4-5 比表面積分析 (BET) 28 3-4-6 熱重分析 (TGA) 29 3-4-7 X光光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 29 3-5 電化學分析 32 3-5-1 計時電位法 (Chronopotentiometry, CP) 32 3-5-2 循環伏安法 (Cyclic Voltammetry, CV) 33 3-5-3 電化學交流電阻抗頻譜法 (Electrochemical impedance spectroscopy, EIS) 34 第4章 實驗結果與討論 45 4-1 鋰硫電池之研究製作與鑑定 45 4-1-1 單質硫宿主化活物分析 47 4-1-2 有無宿主化之單質硫活物電化學表現 54 4-2 水熱環境輔助氨化聚偏氟乙烯之材料鑑定 62 4-3 高分子添加劑於碳硫複合活物所製成之鋰硫電池 86 4-3-1 電化學效能 86 4-3-2 機制探討 91 第5章 結論與未來展望 115 5-1 結論 115 5-2 未來展望 116 文獻 117

    1. Lin, Z. and C. Liang, Lithium-sulfur batteries: from ligand to solid cells., Journal of Material Chemistry A, 2015, 3(3): P936-958.
    2. Zhang, S., et al., Recent advances in Electrolytes for Lithium-Sulfur Batteries. Advanced Energy Materials, 2015. 5(16): P117-150.
    3. Yeh, M. Y. and Ling, J., HALE UAV儲能系統-鋰硫電池發展趨勢探討, Remote Sensing Satellite Technology Workshop, 2016
    4. Chen, L. and L. L. Shaw, Recent advances in lithium-sulfur batteries, Journal of Power Source, 2014. 267: P700-783.
    5. K. Brown, K. Bade and R. Schick, Computational model of large capacity molten Sulphur combustion spray efficacy and process efficiency, The Journal of the Southern African Institute of Mining and Metallurgy, 2017, vol 117, P1135-1143.
    6. Ji, X., K. T. Lee and L. F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nature Material, 2009, 8(6): P500-506.
    7. Zhang, B., et al., Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon sphere, Energy & Environmental Science. 2010, 3(10): P1531-1534.
    8. Li, X., et al., Optimization of mesoporous carbon structures for lithium-sulfur battery application, Journal of Material Chemistry, 2011, 21(41): P160-163.
    9. Pang, Q., D. Kundu and L. F. Nazr, A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries, Materials Horizons, 2016, 3(2): P130-139.
    10. Zhang, S. S. and D. T. Tran, Pyrite FeS2 as an efficient adsorbent of lithium polysulfide for improved lithium-sulfur batteries, Journal of Material Chemistry A, 2016, 4(12): P4371-4374.
    11. Song, M. S., et al., Effects of Nanosized Adsorbing Material om Electrochemical properties of Sulfur Cathode for Li-S Secondary Batteries, Journal of The Electrochemical Society, 2004, 151(6): PA791-A795.
    12. Choi, Y. J., et al., Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell, Physica Scripta, 2007, T129: P62-65.
    13. Ji, X., et al., Stabilizing lithium-sulphur cathodes using polysulfide reservoirs, Nature Communication, 2011, 2, P325
    14. Evers, S., T. Yim, and L. F. Nazar, Understanding the Nature of Absorption/Adsorption in Nanoporous Polysulfide Sorbents for the Li-S Battery, The Journal of Physical Chemistry C, 2012, 116(37): P19653-19658.
    15. Zhang, S. S., Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013, 231: P153-162.
    16. Peng, H. J., et al., Enhanced Electrochemical Kinetics on Conductive Polar Mediator for Lithium-Sulfur Batteries. Angew. Chem. Ed. Engl., 2016, 55(42):P12990-12995.
    17. Z.W. Seh, et al., Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder, Chemical Science, 2013, 4: P3673-3677.
    18. Y. L. Chen, et al., Chitosan as a functional additive for high performance lithium-sulfur batteries, Journal of Materials Chemistry A, 2015, 3: P15235-15240.
    19. L. L. Yan, et al., Ionically Cross-linked PEDOT:PSS as a multi-functional conductive binder for high-performance lithium-sulfur battery, Sustainable Energy & Fuels, 2018, 2: P1574-1581.
    20. J. Song, et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal capacity sulfur cathode with exceptional cycling stability for lithium-sulfur battery, Advanced Functional Materials, 2013, 24: P1243-1250.
    21. Z. W. She, et al., Facile synthesis of Li2S-polypyrole composite structures for high-performance Li2S cathode, Energy & Environmental Science, 2014, 7: P672-677.
    22. J. H. Zhang, et al., Improving the cycling stability of lithium-sulfur batteries by hollow dual-shell coating, RCS Advances, 2018, 17(8), P: 9161-9167.
    23. H. Rajati, et al., Improved CO2 transport properties of Matrimid membranes by adding amine-functionalized PVDF and MIL-101(Cr), Separation and Purification Technology, 2019, 235: P1-17.
    24. S. Hufner, Photoelectron spectroscopy, Springer Verlag, 1995.
    25. User manual of AutoLab electrochemical workstation.
    26. W. H. Mulder, et al., Tafel current at fractal electrode. Connection with admittance spectra, Journal of Electrochemistry, 1990, 285(103).
    27. C. H. Kim, et al., An investigation of capacitance dispersion on the fractal carbon electrode with edge and basal orientation, Electrochemica Acta, 2003, 48: P3455.
    28. C. A. Schiller and W. Strunz, The evaluation of experimental dielectric data of barrier coating by means of different model, Electrochemica Acta, 2001, 46: P3619.
    29. J. B. Jorcin, et al., CPE Analysis by Local Impedance Analysis, Electrochemica Acta, 2006, 51: P1473-1479.
    30. Airbus’s new Zephyr aircraft makes 26-day record maiden flight, THE ENGINEER, 8th August 2018.
    31. J. M. Zheng, et al., How to Obtain Reproducible Results for Lithium Sulfur Batteries?, Journal of The Electrochemical Society,2013, 160(11): P2288-2292.
    32. M. A. Tadda, et al., A review on activated carbon: process, application and prospects, Journal of Advanced Civil Engineering Practice and Research,2018, 2(1): P7-13.
    33. 涂宛蓉,利用軟模板法製備胺修飾3D體心立方結構碳材作為鋰硫電池正極材料之研究,國立高雄大學應化所,2017: P49.
    34. X. Y. Liu, et al., Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process, Molecules, 2010, 15: P7188-7196.
    35. X. Li, et al., A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation, Nature Communications, 2018, 9: P4509-4519.
    36. Peeling Adhesion of Pressure Sensitive Tape, Harmonized International Standard, PSTC 101.
    37. M. M. Modena, et al., Nanoparticle Characterization: What to Measure?, Advanced Materials, 2019, 31: P1556-1582.
    38. H. Su, et al., Janus particles: design, preparation, and biomedical applications, Materials Today Bio, 2019, 10033(4).
    39. W. L. Zhu, et al., Effect of component content variation on composition and structure of activated carbon in PVDF:K2CO3, Physical Chemistry Chemical Physics, 2019, 21(5): P 2382-2388.
    40. W. Feng, et al., Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications, Advanced Science, 2016, 3(7): P1500413.
    41. A. Siekierka, et al., Novel anion exchange membrane for concentration of lithium salt in hybrid capacitive deionization, Desalination, 2019, 452: P279-289.
    42. X. M. Cai, et al., A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR, RCS Advance, 2017, 7: P15382-15389.
    43. R. E. Davis, et al., Sulfur in amine solvents, Journal of American Chemistry Society, 1962, 84(11): P2088-2090.

    44. C. H. Wang, et al., Sulfur-amine chemistry-based synthesis of multi-walled carbon nanotube-sulfur composites for high performance Li-S batteries, 2014, 50: P1202-1204.
    45. F. M. Wang, et al., Interface interaction behavior of self-terminated oligomer electrode additives for a Ni-rich layer cathode in lithium-ion batteries: voltage and temperature effect, ACS applied materials & interfaces, 2019, 11: P39827-39840.
    46. H. Sun and K. Zhao, Electronic Structure and Comparative properties of LiNixMnyCozO2 Cathode Materials, The Journal of Physical Chemistry C, 2017, 121: P6002-6010.

    無法下載圖示 全文公開日期 2025/08/19 (校內網路)
    全文公開日期 2025/08/19 (校外網路)
    全文公開日期 2025/08/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE