簡易檢索 / 詳目顯示

研究生: Nahid Kaisar
Nahid Kaisar
論文名稱: Facile Synthesis of Nanomaterials to Achieve Long-Lifespan Lithium-Sulfur Batteries
Facile Synthesis of Nanomaterials to Achieve Long-Lifespan Lithium-Sulfur Batteries
指導教授: 周賢鎧
Shyan-Kay Jou
朱治偉
Chih-Wei Chu
口試委員: 周賢鎧
Shyan-kay Jou
王丞浩
Chen-Hao Wang
Bing-Joe Huang
Bing-Joe Huang
Mao-Kuen Wu
Mao-Kuen Wu
Jason Fang
Jason Fang
Chih-Wei Chu
Chih-Wei Chu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 89
中文關鍵詞: NanomaterialsLi-S batterySeparatorLithium AnodeLithium DendriteLithium Polysulfides
外文關鍵詞: Shuttling Effect
相關次數: 點閱:173下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前研究人員已開發出鉛酸,鎳鎘,鎳氫,鋰離子電池以解決可再充電電池的增長需求。元素硫可提供的高理論容量為1672 mAh / g,該元素豐富,廉價且環保,因此使用硫作為正極材料引起了研究人員的極大興趣。儘管具有這些優點,但在實際應用上,因為穿梭效應,硫的絕緣性以及活性材料的體積變化會導致電池重量能量密度低和循環壽命短,這阻礙了鋰-硫電池產業的發展。穿梭效應為陰極中活性物質的存在而導致電化學反應過程中,在陰極側形成的多硫化物(Li2Sn),此效應成為世界範圍內研究人員面臨的主要挑戰之一。
    第一章為討論鋰電池技術發展相關的挑戰以及解決這些問題的進展。 Li-S電池商業化過程中的主要挑戰涉及陰極,隔膜和鋰陽極。在放電過程中,硫陰極會生成多硫化鋰,這會導致電池壽命縮短。研究人員試圖通過開發合適的陰極主體,然後使用改良的隔板將多硫化物限制在陰極側來解決此問題。鋰離子電池在充放電過程中形成鋰枝晶是另一個大問題。為了解決這個問題,人們付出了很多努力,在鋰金屬或合適的基質上開發了人工SEI層以嵌入Li +離子。
    第二章介紹了雙層隔膜的研究,該隔膜的一側為MoO3納米帶,另一側為聚合物,以防止多硫化物遷移;鈣鈦礦作為鋰陽極上的插層,以避免鋰枝晶的形成。放電過程中,多硫化鋰(LiPS)溶解到電解質中,導致LiPS從陰極穿入鋰(Li)金屬,這是鋰硫電池(LSB)容量下降和電池壽命短的主要原因。在本文中,我們設計了一種隔膜,該隔膜包含塗有MoO3納米帶(MNB)的聚丙烯(PP),該聚丙烯是通過對商用MoO3粉末進行簡易研磨而製備的。放電過程中Li2Sn-MoO3的形成抑制了多硫化物的穿梭。在充電過程中,Li鈍化了LixMoO3,通過降低電荷轉移電阻來促進氧化還原反應期間的離子轉移。 LiPS的這種雙重相互作用機制(具有Mo和LixMoO3的形成)導致在5C的高的電流密度下具有相當高的初始放電容量,在5000次循環後保留了29.4%的容量。使用這種MNB塗覆的隔膜,其簡單製造方法和非凡的循環壽命為LSB的未來商業化提供了可擴展的解決方案。
    我們亦展示了δ-CsPbI3作為一種電化學插入層,它是通過一種廉價且便捷的噴塗方法製造的,可穩定鋰金屬電池的鋰電極。實驗和密度函數理論研究證實,Li +離子可電化學插入δ-CsPbI3(形成Li:CsPbI3),從而提高電導率並避免枝晶形成,改善離子遷移,穩定電沉積並保持固體–電解質界面完整性。對Li:CsPbI3對稱電池的電化學測試表明,在1000 h測試後,電流密度為1 mA cm-2且放電容量為1 mA h cm-2時,電池中未發生枝晶電鍍。在鋰金屬陽極上插入層後,Li–S全電池初始比容量為823 mA hg–1,以1C的速率的充放電條件下,每個循環的衰減率約為0.035%,並在整個1000個循環中的庫侖效率約為100%。使用這一新概念,我們獲得了用於高能量密度電池的穩定鋰金屬陽極,從而有可能開闢製備安全鋰金屬電池的新方法。
    第三章總結了所有的研究工作,並提出了今後的工作。


    Previously lead-acid, nickel-cadmium, nickel metal hydride, lithium-ion battery has been developed to settle accretive demand of rechargeable battery. High theoretical capacity of 1672 mAh/g provided by elemental sulphur which is abundant, inexpensive as well as eco-friendly, drew lot of interest to the researchers to use sulfur as cathode material. Despite these advantages, in reality, shuttling effect, insulating nature of sulphur and large volume changes of active material would result in low gravimetric energy density and short cycle life, which impede the development of Li-S battery industry. The formation of polysulfides (Li2Sn) on the cathode side during the electrochemical reaction arising from the presence of active material in the cathode leads to an undesirable phenomenon known as shuttling effect, which becomes one of the premier challenges to the researcher around the world.
    The first chapter discussed the challenges associated with development of Li-S battery technology and the progress to solve the issues. Major challenges during commercialization of Li-S battery deal with cathode, separator and lithium anode. During discharge process, sulfur cathode generates lithium polysulfides, which cause short life of the battery. Researchers tried to solve this issue by developing a suitable host for cathode followed by modified separator to confine the polysulfides on the cathode side. Lithium dendrite formation during charge-discharge process is another big issue with the Li-S battery. Lots of effort put to solve this by developing artificial SEI layer on top of Li metal or a suitable host to intercalate the Li+ ions.
    The second chapter illustrated the study of a bilayer separator, which consists of MoO3 nanobelts on one side and polymer on the other to prevent the migration of polysulfide, and perovskite as intercalation layer on the lithium anode to avoid lithium dendrite formation. Dissolution of lithium polysulfide (LiPS) into the electrolyte during discharging, causing shuttling of LiPS from the cathode to the lithium (Li) metal, is mainly responsible for the capacity decay and short battery life of lithium–sulfur batteries (LSBs). Herein, we designed a separator—comprising of polypropylene (PP) coated with MoO3 nanobelts (MNBs), prepared through facile grinding of commercial MoO3 powder. Formation of Li2Sn–MoO3 during discharging inhibited the polysulfide shuttling; during charging, Li passivated LixMoO3 facilitating ionic transfer during the redox reaction by decreasing the charge transfer resistance. This dual-interaction mechanism of LiPS—with both Mo and formation of LixMoO3—resulted in a substantially high initial discharge capacity at a very high current density of 5C, with 29.4% of the capacity retained after 5000 cycles. The simple fabrication approach and extraordinary cycle life observed when using this MNBs-coated separator suggests a scalable solution for future commercialization of LSBs.
    We demonstrate δ-CsPbI3 as an electrochemical intercalation layer, fabricated through an inexpensive and facile spray-coating method, that stabilizes Li electrodes for Li-metal batteries. Experimental and density function theory studies confirmed that Li+ ions can be intercalated electrochemically into δ-CsPbI3 (forming Li:CsPbI3), thereby increasing the conductivity and avoiding dendrite formation, resulting in improved ion migration, stabilized electrodeposition, and the maintained integrity of the solid–electrolyte interface. Electrochemical testing of a Li:CsPbI3 symmetric cell revealed dendrite-free plating after 1000 h at a current density of 1 mA cm–2 and discharge capacity of 1 mA h cm–2. With an intercalation layer on a Li-metal anode, the Li–S full cell configuration displayed an initial specific capacity of 823 mA h g–1 with a decay rate of approximately 0.035% per cycle and a coulombic efficiency of approximately 100% throughout 1000 cycles at a 1C rate. Using this new concept, we have obtained stable Li-metal anodes for high energy density batteries, potentially opening up new approaches for preparing safe Li-metal batteries.
    The third chapter concluded all the research works and propose a future work.

    Table of Contents Chapter 1: General Introduction 1 1.1. Li-ion Battery Technology 2 1.2. Li-Sulfur Battery 4 1.2.1. Mechanism of Li-S Battery 5 1.3. The Challenges of Li-S Battery 8 1.3.1. Limitations of Cathode/Positive Electrode 8 1.3.2. Limitations of Separator 9 1.3.3. Limitations of Anode/Negative Electrode 9 1.4. Strategies to Solve the Challenges 10 1.4.1. Designing Sulfur Cathode 10 1.4.2. Modified Separator 15 1.4.3. Modified Li Anode 22 Chapter 2: Materials and Experimental 28 2.1. Materials 29 2.2. Instruments 29 2.3. Materials Preparation 30 2.3.1. MoO3 NBs Coated Separator Preparation 30 2.3.2. Fabrication of Intercalation Layer on Lithium Metal 31 2.4. Characterizations 31 2.5. Electrochemical Measurements 32 2.6. Density Functional Theory (DFT) Calculations 34 Chapter 3: Lithium Passivated MoO3 Nanobelts Decorated Polypropylene Separator and Perovskite Intercalation Layer on Lithium Electrode to Achieve Long-Lifespan Li-S Battery 36 3.1. Results and Discussion: Lithium Passivated MoO3 Nanobelts Decorated Polypropylene Separator 37 3.2. Results and Discussion: Perovskite Intercalation Layer to Stabilize Lithium Electrodes 54 Chapter 4: Conclusion and Future Prospects and References 76 4.1. Conclusions 77 4.2. Future Prospect: Pb-Free Perovskite for Safer and Long-Life Li-S Battery 77 4.3. Future Prospect: In-situ Growth of Co9S8 Derived from Metal-Organic Framework as a Polysulfide Mediator for Advance Lithium-Sulfur Battery 78 4.4. References 79  List of Publications 88

    1. M. R. Kaiser, Z. Han, J. Liang, S.-X. Dou and J. Wang, Energy Storage Materials, 2019, 19, 1-15.
    2. H. Zhang, C. Li, G. G. Eshetu, S. Laruelle, S. Grugeon, K. Zaghib, C. Julien, A. Mauger, D. Guyomard and T. Rojo, Angewandte Chemie International Edition, 2020, 59, 534-538.
    3. J. M. Tarascon and M. Armand, Nature, 2001, 414, 359-367.
    4. M. Wakihara, Materials Science and Engineering: R: Reports, 2001, 33, 109-134.
    5. M. Armand and J. M. Tarascon, Nature, 2008, 451, 652-657.
    6. P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nature Materials, 2012, 11, 19-29.
    7. R. Rauh, K. Abraham, G. Pearson, J. Surprenant and S. Brummer, Journal of the Electrochemical Society, 1979, 126, 523-527.
    8. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Elsevier, 2012.
    9. Z.-L. Xu, J.-K. Kim and K. Kang, Nano Today, 2018, 19, 84-107.
    10. S. S. Zhang, Journal of Power Sources, 2013, 231, 153-162.
    11. S. S. Zhang and J. A. Read, Journal of Power Sources, 2012, 200, 77-82.
    12. Y.-J. Choi, Y.-D. Chung, C.-Y. Baek, K.-W. Kim, H.-J. Ahn and J.-H. Ahn, Journal of Power Sources, 2008, 184, 548-552.
    13. M. R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner and J. Janek, Journal of Power Sources, 2014, 259, 289-299.
    14. S. A. Abbas, M. A. Ibrahem, L.-H. Hu, C.-N. Lin, J. Fang, K. M. Boopathi, P.-C. Wang, L.-J. Li and C.-W. Chu, Journal of Materials Chemistry A, 2016, 4, 9661-9669.
    15. H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui and H. Dai, Nano Letters, 2011, 11, 2644-2647.
    16. S.-C. Han, M.-S. Song, H. Lee, H.-S. Kim, H.-J. Ahn and J.-Y. Lee, Journal of the Electrochemical Society, 2003, 150, A889-A893.
    17. H. Ryu, H. Ahn, K. Kim, J. Ahn, K. Cho and T. Nam, Electrochimica Acta, 2006, 52, 1563-1566.
    18. G. Ma, Z. Wen, J. Jin, Y. Lu, X. Wu, C. Liu and C. Chen, RSC Advances, 2014, 4, 21612-21618.
    19. S. Waluś, C. Barchasz, J.-F. Colin, J.-F. Martin, E. Elkaïm, J.-C. Leprêtre and F. Alloin, Chemical Communications, 2013, 49, 7899-7901.
    20. M. Cuisinier, P.-E. Cabelguen, S. Evers, G. He, M. Kolbeck, A. Garsuch, T. Bolin, M. Balasubramanian and L. F. Nazar, The Journal of Physical Chemistry Letters, 2013, 4, 3227-3232.
    21. S. Y. Lang, Y. Shi, Y. G. Guo, D. Wang, R. Wen and L. J. Wan, Angewandte Chemie International Edition, 2016, 55, 15835-15839.
    22. Y. V. Mikhaylik and J. R. Akridge, Journal of The Electrochemical Society, 2004, 151, A1969-A1976.
    23. L. Suo, Y.-S. Hu, H. Li, M. Armand and L. Chen, Nature Communications, 2013, 4, 1481.
    24. Z. Luo, C. Liu, Y. Tian, Y. Zhang, Y. Jiang, J. Hu, H. Hou, G. Zou and X. Ji, Energy Storage Materials, 2020, 27, 124-132.
    25. C. Yang, Y. Yao, S. He, H. Xie, E. Hitz and L. Hu, Advanced Materials, 2017, 29, 1702714.
    26. L. Li, Z. P. Wu, H. Sun, D. Chen, J. Gao, S. Suresh, P. Chow, C. V. Singh and N. Koratkar, ACS Nano, 2015, 9, 11342-11350.
    27. M. Winter, Zeitschrift für Physikalische Chemie, 2009, 223, 1395-1406.
    28. H. Schranzhofer, J. Bugajski, H. Santner, C. Korepp, J. Besenhard, M. Winter and W. Sitte, Journal of Power Sources, 2006, 153, 391-395.
    29. M. Wang, X. Xia, Y. Zhong, J. Wu, R. Xu, Z. Yao, D. Wang, W. Tang, X. Wang and J. Tu, Chemistry–A European Journal, 2019, 25, 3710-3725.
    30. R. Chulliyote, H. Hareendrakrishnakumar and M. G. Joseph, ACS Sustainable Chemistry & Engineering, 2019, 7, 19344-19355.
    31. Q. Xiao, G. Li, M. Li, R. Liu, H. Li, P. Ren, Y. Dong, M. Feng and Z. Chen, Journal of Energy Chemistry, 2020, 44, 61-67.
    32. J. Zhang, J. Guo, Y. Xia, Y. Gan, H. Huang, C. Liang, G. Du, X. Tao and W. Zhang, New Journal of Chemistry, 2019, 43, 1380-1387.
    33. B.-J. Lee, H.-Y. Park, D.-S. Yang, T.-H. Kang, S. Hwang and J.-S. Yu, Journal of The Electrochemical Society, 2019, 166, A5244-A5251.
    34. X. Sun, Y. Huang, M. Chen, Y. Wang, X. Gao and L. Wang, Materials Letters, 2018, 232, 122-125.
    35. Y. Quan, D. Han, Y. Feng, S. Wang, M. Xiao and Y. Meng, International Journal of Electrochem Science, 2017, 12, 5984-5997.
    36. D. Gueon, J. T. Hwang, S. B. Yang, E. Cho, K. Sohn, D.-K. Yang and J. H. Moon, ACS Nano, 2018, 12, 226-233.
    37. M. Zheng, Q. Hu, S. Zhang, H. Tang, L. Li and H. Pang, Applied Sciences, 2017, 7, 1036.
    38. X. Ji, K. T. Lee and L. F. Nazar, Nature Materials, 2009, 8, 500-506.
    39. S.-R. Chen, Y.-P. Zhai, G.-L. Xu, Y.-X. Jiang, D.-Y. Zhao, J.-T. Li, L. Huang and S.-G. Sun, Electrochimica Acta, 2011, 56, 9549-9555.
    40. Y. S. Choi, J. M. Yoo and B. H. Hong, in Graphene for Flexible Lighting and Displays, Elsevier, 2020, pp. 5-26.
    41. Z. Xu, in Graphene, eds. H. Zhu, Z. Xu, D. Xie and Y. Fang, Academic Press, 2018, 73-102.
    42. G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li and H.-M. Cheng, Nano Energy, 2015, 11, 356-365.
    43. K. Jin, X. Zhou, L. Zhang, X. Xin, G. Wang and Z. Liu, The Journal of Physical Chemistry C, 2013, 117, 21112-21119.
    44. R. Kannan, D. Rajan, P. K. Terala, P. L. Moss and M. H. Weatherspoon, International Journal of Electrochemistry, 2018, .
    45. J. H. Lee, J. Kang, S.-W. Kim, W. Halim, M. W. Frey and Y. L. Joo, ACS Omega, 2018, 3, 16465-16471.
    46. K. Yuan, L. Yuan, J. Xiang, J. Liu, J. Gu, X. Chen, Z. Hao, M. Li and Y. Huang, Journal of The Electrochemical Society, 2018, 165, A1880-A1885.
    47. H. Li, L. Sun, Y. Zhang, T. Tan, G. Wang and Z. Bakenov, Journal of Energy Chemistry, 2017, 26, 1276-1281.
    48. S. Karuppiah, B. Kalimuthu, M. A. Nazrulla, S. Krishnamurty and K. Nallathamby, Journal of Materials Chemistry A, 2019, 7, 10067-10076.
    49. N. Kaisar, S. A. Abbas, J. Ding, H.-A. Chen, C.-W. Pao, K. M. Boopathi, A. Mohapatra, Y.-T. Chen, S. H. Wu and J. Fang, Nanoscale, 2019, 11, 2892-2900.
    50. S. Gope and A. J. Bhattacharyya, ACS Applied Energy Materials, 2018, 1, 2942-2954.
    51. S. A. Abbas, J. Ding, S. H. Wu, J. Fang, K. M. Boopathi, A. Mohapatra, L. W. Lee, P.-C. Wang, C.-C. Chang and C. W. Chu, ACS Nano, 2017, 11, 12436-12445.
    52. J. He, Y. Chen and A. Manthiram, Energy & Environmental Science, 2018, 11, 2560-2568.
    53. M. Li, Y. Wan, J.-K. Huang, A. H. Assen, C.-E. Hsiung, H. Jiang, Y. Han, M. Eddaoudi, Z. Lai and J. Ming, ACS Energy Letters, 2017, 2, 2362-2367.
    54. S. Bai, X. Liu, K. Zhu, S. Wu and H. Zhou, Nature Energy, 2016, 1, 1-6.
    55. S. H. Kim, J. S. Yeon, R. Kim, K. M. Choi and H. S. Park, Journal of Materials Chemistry A, 2018, 6, 24971-24978.
    56. J. Sun, Y. Sun, M. Pasta, G. Zhou, Y. Li, W. Liu, F. Xiong and Y. Cui, Advanced Materials, 2016, 28, 9797-9803.
    57. W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang and Y. Cui, Nature Communications, 2015, 6, 1-8.
    58. R. Khurana, J. L. Schaefer, L. A. Archer and G. W. Coates, Journal of the American Chemical Society, 2014, 136, 7395-7402.
    59. Y. Hu, W. Chen, T. Lei, Y. Jiao, H. Wang, X. Wang, G. Rao, X. Wang, B. Chen and J. Xiong, Nano Energy, 2020, 68, 104373.
    60. B. N. Choi, J. Y. Seo, B. Kim, Y. S. Kim and C.-H. Chung, Applied Surface Science, 2020, 506, 144884.
    61. U. Subramanya, C. Chua, V. G. H. Leong, R. Robinson, G. A. C. Cabiltes, P. Singh, B. Yip, A. Bokare, F. Erogbogbo and D. Oh, RSC Advances, 2020, 10, 674-681.
    62. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure and D. L. Wood III, Carbon, 2016, 105, 52-76.
    63. W. Na, A. S. Lee, J. H. Lee, S. S. Hwang, E. Kim, S. M. Hong and C. M. Koo, ACS Applied Materials & Interfaces, 2016, 8, 12852-12858.
    64. P. Zhang, J. Zhu, M. Wang, N. Imanishi and O. Yamamoto, Electrochemistry Communications, 2018, 87, 27-30.
    65. F. Han, J. Yue, X. Zhu and C. Wang, Advanced Energy Materials, 2018, 8, 1703644.
    66. H. Lee, X. Ren, C. Niu, L. Yu, M. H. Engelhard, I. Cho, M. H. Ryou, H. S. Jin, H. T. Kim and J. Liu, Advanced Functional Materials, 2017, 27, 1704391.
    67. S.-O. Tung, S. Ho, M. Yang, R. Zhang and N. A. Kotov, Nature Communications, 2015, 6, 1-7.
    68. X. Cui, Y. Chu, L. Qin and Q. Pan, ACS Sustainable Chemistry & Engineering, 2018, 6, 11097-11104.
    69. E. Cha, M. D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho and W. Choi, Nature Nanotechnology, 2018, 13, 337-344.
    70. X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan and J. B. Goodenough, Nature Communications, 2019, 10, 1-9.
    71. M. A. Ibrahem, W.-C. Huang, T.-w. Lan, K. M. Boopathi, Y.-C. Hsiao, C.-H. Chen, W. Budiawan, Y.-Y. Chen, C.-S. Chang and L.-J. Li, J. Mater. Chem. A 2014, 2, 11382-12390.
    72. P. Ji, B. Shang, Q. Peng, X. Hu and J. Wei, J. Power Sources, 2018, 400, 572-579.
    73. P. E. Blöchl, Phys. Rev. B 1994, 50, 17953.
    74. G. Kresse and D. Joubert, Phys. Rev. B 1999, 59, 1758.
    75. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
    76. G. Kresse and J. Furthmüller, Physical Review B, 1996, 54, 11169.
    77. G. Kresse and J. Furthmüller, Computational Materials Science, 1996, 6, 15-50.
    78. G. Kresse and D. Joubert, Physical Review B, 1999, 59, 1758.
    79. Y. Wang, T. Gould, J. F. Dobson, H. Zhang, H. Yang, X. Yao and H. Zhao, Physical Chemistry Chemical Physics 2013, 16, 1424–1429.
    80. H. Jónsson, G. Mills and K. Jacobsen, Journal, 1998, 391, 561-563.
    81. G. Henkelman, B. P. Uberuaga and H. Jónsson, The Journal of Chemical Physics, 2000, 113, 9901-9904.
    82. G. Henkelman, Transition State Tools for VASP (2013), http://theory.cm.utexas.edu/vtsttools/; accessed: July 2019.
    83. M. A. Ibrahem, W.-C. Huang, T.-w. Lan, K. M. Boopathi, Y.-C. Hsiao, C.-H. Chen, W. Budiawan, Y.-Y. Chen, C.-S. Chang and L.-J. Li, J. Mater. Chem. A 2014, 2, 11382-12390.
    84. M. Bodaghi, A. Mirhabibi, H. Zolfonun, M. Tahriri and M. Karimi, Phase Transitions 2008, 81, 571-580.
    85. R. Gers, E. Climent, D. Legendre, D. Anne-Archard and C. Frances, Chem. Eng. Sci. 2010, 65, 2052-2064.
    86. J. H. Huang, T. Y. Huang, H. Y. Wei, K. C Ho, C. W. Chu, RSC Advances, 2012, 2,7487-7491.
    87. V. Šepelák, S. Bégin-Colin and G. Le Caër, Dalton Trans. 2012, 41, 11927-11948.
    88. G. Wang, J. Ni, H. Wang and L. Gao, J. Mater. Chem. A 2013, 1, 4112-4118.
    89. Z. Yang, J. Guo, S. K. Das, Y. Yu, Z. Zhou, H. D. Abruña and L. A. Archer, J. Mater. Chem. A 2013, 1, 1433-1440.
    90. C. Barchasz, F. Molton, C. Duboc, J.-C. Leprêtre and S. Patoux, F. Alloin, Anal. Chem. 2012, 84, 3973-3980.
    91. S. A. Abbas, J. Ding, S. H. Wu, J. Fang, K. M. Boopathi, A. Mohapatra, L. W. Lee, P.-C. Wang, C.-C. Chang and C. W. Chu, ACS Nano 2017, 11, 12436-12445.
    92. X. Yang, N. Yan, W. Zhou, H. Zhang, X. Li and H. Zhang, J. Mater. Chem. A 2015, 3, 15314-15323.
    93. H. Kobayashi, M. Tabuchi, M. Shikano, Y. Nishimura, H. Kageyama, T. Ishida, H. Nakamura, Y. Kurioka and R. Kanno, J. Power Sources 1999, 81, 524-529.
    94. J. Ma, Y. Gao, Z. Wang and L. Chen, J. Power Sources 2014, 258, 314-320.
    95. M. Baldoni, L. Craco, G. Seifert and S. Leoni, J. Mater. Chem. A 2013, 1, 1778-1780.
    96. I. Bauer, S. Thieme, J. Brückner, H. Althues and S. Kaskel, J. Power Sources 2014, 251, 417-422.
    97. S. Berthumeyrie, J.-C. Badot, J.-P. Pereira-Ramos, O. Dubrunfaut, S. Bach and P. Vermaut, J. Phys. Chem. C 2010, 114, 19803-19814-1923.
    98. N. A. Canas, K. Hirose, B. Pascucci, N. Wagner, K. A. Friedrich and R. Hiesgen, Electrochim. Acta 2013, 97, 42-51.
    99. J. D. Benck, Z. Chen, L. Y. Kuritzky, A. J. Forman and T. F. Jaramillo, ACS Catal. 2012, 2, 1916-1923.
    100. T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu and M. Li, Energy Environ. Sci. 2013, 6, 625-633.
    101. P. A. Spevack and N. McIntyre, J. Phys. Chem. 1993, 97, 11031-11036.
    102. F. Y. Fan, W. C. Carter and Y. M. Chiang, Adv. Mater. 2015, 27, 5203-5209.
    103. Y. Ren, T. Zhao, M. Liu, P. Tan and Y. Zeng, J. Power Sources 2016, 336, 115-125.
    104. S. Waluś, G. Offer, I. Hunt, Y. Patel, T. Stockley, J. Williams and R. Purkayastha, Energy Storage Mater. 2017, 10, 233-245.
    105. S. S. Zhang, Energies, 2012, 5, 5190-5197.
    106. J. He, Y. Chen, A. Manthiram, iScience. 2018, 4, 36-43.
    107. M. Ramesh, K. M. Boopathi, T.-Y. Huang, Y.-C. Huang, C.-S. Tsao and C.-W. Chu, ACS Applied Materials & Interfaces, 2015, 7, 2359-2366.
    108. A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.-M. Jancu, Y. Bonnassieux, C. Katan, C. C. Stoumpos, M. G. Kanatzidis and J. Even, ACS Nano, 2018, 12, 3477-3486.
    109. J. Zhang, G. Hodes, Z. Jin and S. Liu, Angewandte Chemie International Edition, 2019, 58, 15596-15618.
    110. M. Lai, Q. Kong, C. G. Bischak, Y. Yu, L. Dou, S. W. Eaton, N. S. Ginsberg and P. Yang, Nano Research, 2017, 10, 1107-1114.
    111. C. K. MØLLER, Nature, 1958, 182, 1436-1436.
    112. K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu and Y. Cui, Nature Energy, 2016, 1, 16010.
    113. Q. Jiang, M. Chen, J. Li, M. Wang, X. Zeng, T. Besara, J. Lu, Y. Xin, X. Shan and B. Pan, ACS Nano, 2017, 11, 1073-1079.
    114. R. A. Huggins, Journal of Power Sources, 1988, 22, 341-350.
    115. S. A. Abbas, M. A. Ibrahem, L.-H. Hu, C.-N. Lin, J. Fang, K. M. Boopathi, P.-C. Wang, L.-J. Li and C.-W. Chu, Journal of Materials Chemistry A, 2016, 4, 9661-9669.
    116. N. Kaisar, S. A. Abbas, J. Ding, H.-A. Chen, C.-W. Pao, K. M. Boopathi, A. Mohapatra, Y.-T. Chen, S. H. Wu and J. Fang, S. Jou and C. W. Chu Nanoscale, 2019, 11, 2892-2900.

    QR CODE