簡易檢索 / 詳目顯示

研究生: 王振瑜
Jeng-Yu Wang
論文名稱: 小型工具機之二維誤差補償法之研究
A Study on Two-Dimensional Error Compensation on a Small Machine Tool
指導教授: 李維楨
Wei-Chen Lee
口試委員: 修芳仲
Fang-Jung Shiou
石伊蓓
Yi-Pei Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 159
中文關鍵詞: 離線量測二維誤差補償工具機
外文關鍵詞: Off-line measurement, Two-dimensional, Error compensation, Machine tool
相關次數: 點閱:315下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究目的為使用離線量測設備,結合自行開發之誤差補償路徑演算法,改善數控銑床加工的尺寸誤差、尺寸歪斜,與減少刀具磨耗對工件尺寸之影響。
實驗使用之加工設備為小型三軸數控銑床。與二次元影像量測儀,對加工後的工件進行離線尺寸檢測。軟體設備使用Visual C#程式語言,開發自動誤差補償路徑演算法,補償銑床之加工誤差問題。
自動誤差補償路徑演算法,由鏡射加工路徑概念與正交迴歸直線理論所組成。透過程式讀取與儲存二次元影像量測儀的工件尺寸量測報表,並且由尺寸量測報表中的工件二維尺寸資訊,自動計算與生成誤差補償路徑。最後,將誤差補償路徑,匯入三軸數控銑床中,進行工件的尺寸誤差、尺寸歪斜與刀具磨耗之誤差補償,提升三軸數控銑床之加工準確度。
二維離線量測與誤差補償實驗,分別針對正方形,偏轉3度正方形、偏轉30度正方形與圓形等四種工件特徵,進行量測與誤差補償。補償後量測尺寸數據的絕對誤差下降百分比為88~99%以上,代表補償後的尺寸準確度有明顯地提升。另外,有角度偏轉的正方形特徵,補償後的標準差下降0.6~1.5 μm。代表此誤差補償演算法,確實可改善工件尺寸歪斜問題,提升工件尺寸精密度。
在仿ISO 10791-7機台性能測試片的空間補償實驗中,將工件任意擺放於機床上的四個位置進行誤差補償,驗證此二維離線量測與誤差補償方式,確實可以在機床的任何工作區域中進行補償。
在離線尺寸監控與補償實驗中,使用新刀與磨耗刀具,模擬長時間加工刀具磨耗對工件尺寸的誤差影響。由抽樣檢查的方式,透過離線量測設備量測工件尺寸,監控尺寸變化的趨勢。再由加工路徑補償程式,對刀具磨耗之加工誤差進行補償。透過這個實驗,呈現當加工製造業者批量製造產品時,可以透過此離線量測與誤差補償方法,監控與補償產品尺寸於目標公差範圍中。
透過大型的五軸工具機,進行誤差補償方法的驗證。實驗後得到的量測數據,絕對誤差為0.8 μm且標準差為2.8 μm。其中的標準差數值,相較於小型三軸工具機來得更小。代表此誤差補償方法,不僅適用於小型工具機,對於加工精度更高的大型機台也適用。


The objective of the study was to develop a program used to generate compensation tool path by the measured data of a workpiece using two-dimensional coordinate measuring machine (2D CMM). The error compensation program improved the dimension errors and skewed contour. It can also help to reduce the effect of tool wear on the dimensions during the machining process .
In the study, the workpiece was positioned by using a scroll chuck, machined on a three-axis CNC milling machine and measured on the 2D CMM. The programming language of the compensation program was Visual C#. The program was composed of two algorithms: mirroring tool path and generating orthogonal regression line. The program can import measured data from the 2D CMM and export compensated NC code into the three-axis machine tool in order to compensate the workpiece’s dimension error.
In two-dimensional measurement and compensation experiment, several different types of workpiece were used. The workpieces’ geometric features included a square with 0∘rotation, a square with 3∘rotation, a square with 30∘ rotation and a circle. The decreased absolute errors of features ranged between 88% and 99% after compensation. The result shows that milling accuracy was appreciably improved. Also, the standard deviation was reduced to between 0.6 μm and 1.5μm. The reduced standard diviation indicates that the skewed contour was improved by this
compensation program.
In the experiment that adopted simulated ISO 10791-7 test piece, the workpiece was randomly placed at four locations on the table of the machine tool. The dimension errors of the workpieces were successfully compensated at each location. The result shows that this compensation method is feasible in the working area of the three-axis machine tool.
In the dimension-monitoring experiment, both new and wear tools were used to simulate the effect of the prolonged machining time on the dimension error of the workpiece. In the experiment, the 2D CMM was served as a monitoring apparatus to inspect the dimension errors. If the errors of the workpiece deviated from the tolerance, the workpiece was compensated so that the final dimensions were within the tolerance. The result suggests that controlling the dimensional of the workpieces during the mass production is feasible.
The compensation method was also verified on a five-axis machine tool. The absolute error of a feature was 0.8 μm and the standard deviation was 2.8 μm. The results show that this compensation method was also feasible on machine tools with different accuracy capability.

中文摘要 I Abstract II 誌 謝 IV 目 錄 V 圖索引 VIII 表索引 XIV 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 4 1.3 研究目的 10 第2章 軟硬體設備 11 2.1 三軸數控銑床 11 2.1.1 設備介紹 11 2.1.2 使用刀具與切削材料 11 2.1.3 加工參數設定 12 2.2 二次元量測儀 16 2.2.1 設備介紹 16 2.2.2 加工與量測座標系重合 16 2.2.3 方形量測方法 18 2.2.4 有角度旋轉方形量測方法 20 2.2.5 真圓度量測方法 24 2.3 誤差補償軟體 27 2.3.1 軟體介紹 27 2.3.2 誤差補償概念 27 2.4 手動夾頭 29 2.4.1 設備介紹 29 2.4.2 夾頭定位檢測之一 30 2.4.3 夾頭定位檢測之二 35 2.5 雷射干涉儀 37 2.5.1 設備介紹 37 2.5.2 線性軸之背隙與截距補償 37 2.5.3 機台精度報表 39 第3章 研究方法 44 3.1 補償系統架構 44 3.2 補償理論 46 3.2.1 方形鏡射 46 3.2.2 圓形鏡射 48 3.2.3 迴歸直線 49 3.2.4 正交迴歸直線 53 3.3 加工應用 59 3.3.1 擬合切削曲線 59 3.3.2 正交迴歸切削直線 60 3.3.3 加工路徑平移 62 第4章 實驗結果與討論 64 4.1 正方形補償 64 4.1.1 乾切削兩工序補償 64 4.1.2 濕切削兩工序補償 69 4.1.3 加工不確定性問題 73 4.1.4 乾切削三工序補償 74 4.1.5 濕切削三工序補償 79 4.2 有角度旋轉正方形補償 83 4.2.1 角度3度正方形補償 83 4.2.2 角度30度正方形補償 86 4.3 圓形補償 91 4.4 準確度與精密度探討 97 4.5 仿ISO標準試片空間補償 102 4.6 離線尺寸監控與補償 110 4.6.1 尺寸監控與補償概念 110 4.6.2 結果與討論 114 4.7 大型工具機補償 118 4.7.1 五軸加工中心機 118 4.7.2 三軸加工中心機 119 第5章 結論與未來展望 127 5.1 結論 127 5.2 未來展望 128 參考文獻 129 附錄 132

[1] M. Poniatowska, "Free-form surface machining error compensation applying 3D CAD machining pattern model," Computer-Aided Design, vol. 62, pp. 227-235, 2015.
[2] J.-H. Jung, J.-P. Choi, and S.-J. Lee, "Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement," Journal of Materials Processing Technology, vol. 174, pp. 56-66, 2006.
[3] S. Khodaygan, "Manufacturing error compensation based on cutting tool location correction in machining processes," International Journal of Computer Integrated Manufacturing, vol. 27, pp. 969-978, 2014.
[4] D.-n. Song, J.-w. Ma, Z.-y. Jia, and Y.-y. Gao, "Estimation and compensation for continuous-path running trajectory error in high-feed-speed machining," The International Journal of Advanced Manufacturing Technology, 2016.
[5] M.-W. Cho, G.-H. Kim, T.-I. Seo, Y.-C. Hong, and H. H. Cheng, "Integrated machining error compensation method using OMM data and modified PNN algorithm," International Journal of Machine Tools and Manufacture, vol. 46, pp. 1417-1427, 2006.
[6] S. Zhu, G. Ding, S. Qin, J. Lei, L. Zhuang, and K. Yan, "Integrated geometric error modeling, identification and compensation of CNC machine tools," International Journal of Machine Tools and Manufacture, vol. 52, pp. 24-29, 2012.
[7] C. Raksiri and M. Parnichkun, "Geometric and force errors compensation in a 3-axis CNC milling machine," International Journal of Machine Tools and Manufacture, vol. 44, pp. 1283-1291, 2004.
[8] S.-M. Wang, H.-J. Yu, and H.-W. Liao, "A new high-efficiency error compensation system for CNC multi-axis machine tools," The International Journal of Advanced Manufacturing Technology, vol. 28, pp. 518-526, 2005.
[9] K. M. Y. Law and A. Geddam, "Error compensation in the end milling of pockets: a methodology," Journal of Materials Processing Technology, vol. 139, pp. 21-27, 2003.
[10] V. S. Rao and P. V. M. Rao, "Tool deflection compensation in peripheral milling of curved geometries," International Journal of Machine Tools and Manufacture, vol. 46, pp. 2036-2043, 2006.
[11] R. Guiassa, J. R. R. Mayer, M. Balazinski, S. Engin, and F. E. Delorme, "Closed door machining error compensation of complex surfaces using the cutting compliance coefficient and on-machine measurement for a milling process," International Journal of Computer Integrated Manufacturing, vol. 27, pp. 1022-1030, 2014.
[12] Y. Chen, J. Gao, H. Deng, D. Zheng, X. Chen, and R. Kelly, "Spatial statistical analysis and compensation of machining errors for complex surfaces," Precision Engineering, vol. 37, pp. 203-212, 2013.
[13] M.-W. Cho, T.-i. Seo, and H.-D. Kwon, "Integrated error compensation method using OMM system for profile milling operation," Journal of Materials Processing Technology, vol. 136, pp. 88-99, 2003.
[14] N. R. Slavkovic, D. S. Milutinovic, and M. M. Glavonjic, "A method for off-line compensation of cutting force-induced errors in robotic machining by tool path modification," International Journal of Advanced Manufacturing Technology, vol. 70, pp. 2083-2096, Feb 2014.
[15] J.-x. Chen and S.-w. Lin, "An error compensation scheme for multi-axis machine tool using machining method template," The International Journal of Advanced Manufacturing Technology, 2016.
[16] J. Lai, J. Fu, C. Xia, Z. Lin, G. Fu, and Z. Chen, "Error compensation of free-form surface with critical area based on T-spline surface reconstruction," International Journal of Computer Integrated Manufacturing, pp. 1-10, 2016.
[17] M. Habibi, B. Arezoo, and M. Vahebi Nojedeh, "Tool deflection and geometrical error compensation by tool path modification," International Journal of Machine Tools and Manufacture, vol. 51, pp. 439-449, 2011.
[18] Y. Y. Hsu and S. S. Wang, "A new compensation method for geometry errors of five-axis machine tools," International Journal of Machine Tools and Manufacture, vol. 47, pp. 352-360, 2007.
[19] X. L. Shi, H. L. Liu, H. Li, C. Liu, and G. Y. Tan, "Comprehensive error measurement and compensation method for equivalent cutting forces," International Journal of Advanced Manufacturing Technology, vol. 85, pp. 149-156, Jul 2016.
[20] B. Lu, J. Chen, H. Ou, and J. Cao, "Feature-based tool path generation approach for incremental sheet forming process," Journal of Materials Processing Technology, vol. 213, pp. 1221-1233, 2013.
[21] J. Belchior, M. Guillo, E. Courteille, P. Maurine, L. Leotoing, and D. Guines, "Off-line compensation of the tool path deviations on robotic machining: Application to incremental sheet forming," Robotics and Computer-Integrated Manufacturing, vol. 29, pp. 58-69, 2013.
[22] "http://www.speedtiger.com.tw/document/ 震虎刀具綜合型錄 P405頁."
[23] "http://www.resson.com.tw/tw/products/detail/43 Resson Technologies二次元影像量測儀之設備與規格介紹."
[24] "http://www.cgmchuck.com/?f=Mould-Manufacturing 晟進科技公司快速夾頭."
[25] "https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&ved=0ahUKEwjYqMqAzsbUAhUBSpQKHdRpCwcQFghxMAs&url=http%3A%2F%2Fresources.renishaw.com%2Fen%2Fdownload%2Fbrochure-xl-80-laser-measurement-system--81921&usg=AFQjCNEM2Mj2xRI3yxCQuaJ2iadjOUtTOw&sig2=Ijug18_jnaAARG-_ih8F8g RENISHAW XL-80 鐳射系統."

無法下載圖示 全文公開日期 2023/03/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE