簡易檢索 / 詳目顯示

研究生: 蔡旻諺
Min-Yan Cai
論文名稱: 以五軸工具機進行葉輪量測之研究
A Study on Direct Measurement of Impeller on Five-Axis Machine Tool
指導教授: 林清安
Ching-an Lin
口試委員: 林子寬
Tzu-kuan Lin
林聰德
Tsong-der Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 五軸加工CAD/CAM葉輪加工機上量測誤差補正
外文關鍵詞: Five-axis machining, CAD/CAM, Impeller machining, Direct measurement on machine tool, Error compensation.
相關次數: 點閱:233下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著渦輪壓縮技術的發展逐漸成熟,對渦輪的性能要求也逐漸提高。渦輪葉片是影響渦輪效率的關鍵,而葉片造型包含了高度扭轉的曲面,且伴隨著葉片間重疊的特性在渦輪葉片的製造方面,需要專精的NC加工程式和切削技術來確保葉片的加工品質,故本論文使用五軸加工機進行葉輪加工,並在加工完成後對葉片進行量測,探討誤差的來源,再進行誤差補償,以達到較佳的加工品質。
    在葉輪加工方面,本研究以帶有分流葉片的離心式葉輪為例,以不留下殘料及不過切為前提,葉輪的加工製程包括:葉輪粗加工、葉片中加工、葉片精加工與輪轂面精加工,加工時一方面使用刀軸側傾的方式來避免刀具與葉片的干涉,另一方面運用刀軸前傾來解決輪轂面靜點切削的問題。
    在量測部分,本研究提出一套在五軸加工機上直接進行量測的方式,使用座標轉換公式計算A軸及C軸的旋轉角,並使用萬向尋邊器在加工機上進行量測,另外亦使用三次元量床進行尺寸複檢,最後以量測所得的尺寸進行葉片誤差補正,並據以重新建立葉輪的3D CAD模型,再度進行五軸NC加工,以提昇葉輪的加工精度。
    本研究顯示出以下結果:(1)在相同的切削參數下,適度調整葉輪加工的刀具軸向,可使加工表面品質明顯提昇、(2)直接在工具機上進行量測的方法可量測出葉片前緣誤差量較大的現象、(3)葉片的誤差量經過補正後,葉片前緣誤差量較大的現象有明顯改善。


    As the development of turbo supercharge technology is gradually maturing, the performance requirements for the turbo are also gradually improving. Impeller blades have a direct impact on turbo efficiency. Because of the blades’ highly torsional free-form surface and overlapping characteristic in the manufacturing aspect of turbo blades, a specialized NC machining program and cutting technology are required to ensure good quality machining. Therefore, in this thesis, we used a five-axis machine for the impeller machining, conducted measurement on the blades after the machining was complete to explore the sources of error, and performed error compensation to achieve improved machining quality.
    For the issue of impeller machining, this study took the centrifugal impeller with splitter blades as an example, under the preconditions of no excess material and no gouges. The machining process includes impeller rough machining, blades semi-roughing, blades finishing operations, and hub finishing operations. During the machining, the tool axis’ tilt angle was used to prevent the cutter from interfering with the blades, and the tool axis’ lead angle was utilized to solve the dead cutting point problem of the hub surface.
    For the issue of impeller measurement, this study proposed a set of methods that provide direct measurement on the five-axis machine tool, using the coordinate transformation formula to calculate the rotation angles of A-axis and C-axis. A 3D probe was then used to measure the machined impeller on the five-axis machine tool, and the coordinate measuring machine was also used to re-examine the dimension. Finally, error compensation was conducted on the blades with the measured dimension. Subsequently, based on the re-built 3D CAD model of the impeller, the five-axis NC machining was carried out again to enhance the machining precision of the impeller.
    The study revealed the following results: (1) under the same cutting parameters, appropriately adjusting the cutting tool axis of impeller machining enhanced the machining surface quality significantly, (2) the method of direct measurement on the tool machine detected the phenomenon of a larger margin of error in the blade’s leading edge, and (3) after compensating for the blade’s margin of error, the larger margin of error in the blade’s leading edge was clearly improved.

    摘要............................................ I Abstract....................................... III 誌謝............................................ V 目錄............................................ VI 圖目錄.......................................... IX 表目錄.......................................... XII 第一章 緒論...................................... 1 1.1研究動機及背景................................ 1 1.2研究方法..................................... 2 1.3文獻探討..................................... 3 1.4論文架構..................................... 6 第二章 葉輪種類與幾何特性......................... 8 2.1葉輪種類與應用................................ 8 2.2葉輪的幾何構成................................ 10 第三章 葉輪加工製程規劃與加工實驗.................. 12 3.1葉輪製程規劃.................................. 12 3.2葉輪粗加工.................................... 13 3.3葉片中加工.................................... 18 3.4葉片精加工.................................... 19 3.5輪轂面精加工.................................. 20 3.6實際切削驗證.................................. 23 第四章 葉輪表面品質與誤差改善...................... 25 4.1葉片後緣過切.................................. 25 4.2輪轂面靜點刀痕................................ 27 第五章 葉片機上量測與三次元量測.................... 30 5.1設定量測點位置................................ 30 5.2機上量測方法設計.............................. 33 5.3機上量測結果.................................. 35 5.4 CMM量測儀器介紹.............................. 40 5.5 CMM量測方式................................. 42 5.6 CMM量測結果................................. 43 5.7機上量測與CMM量測結果比較...................... 45 第六章 葉片誤差補償............................... 47 6.1補正方式介紹.................................. 47 6.2補償結果..................................... 48 第七章 結論與未來研究方向......................... 52 7.1結論......................................... 52 7.2未來研究方向.................................. 53 參考文獻........................................ 54

    1.郭哲良,「以五軸加工實驗進行高硬度材料及葉輪製程之研究」(2013),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    2.林國豪,「葉輪五軸加工之刀具防撞策略研究」(2014),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    3.呂三和,「葉輪之電腦輔助製造/量測系統之開發與研究」(1998),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    4.莊禮彰,「離心式壓縮機葉輪五軸加工規劃」(2003),博士論文,國立台灣大學機械工程學系研究所,台北市。
    5.廖凱偉,「離心式葉輪輪轂面五軸粗銑及精銑之加工路徑規劃」(2007),碩士論文,國立台北科技大學製造科技研究所,台北市。
    6.Pengmin Dong, Zhengrong Guan, Wang TianQi (2011), “Cutting Path Planning for Surface Impellers” Third International Conference on Measuring Technology and Mechatronics Automation, Vol. 1, pp. 804-807.
    7.黃煒能,「含分離葉片離心式渦輪之整合性刀具路徑規劃架構」(2006),碩士論文,國立清華大學工業工程與工程管理學系工業工程組,新竹市。
    8.Koichi Morishige and Yoshimi Takechi (1997), “5-Axis Control Rough Cutting of an Impeller with Efficiency and Accuracy.” International Conference on Robotics and Automation, Vol. 2, pp. 1241-1426.
    9.Kuan-Hung Chen(2011), “Investigation of tool orientation for milling blade of impeller in five-axis machining.” International Journal of Advanced Manufacturing Technology, Vol. 52, pp. 235-244.
    10.Tae-Soon Lim, Chea-Moon Lee, Seok-Won Kim and Deug-Woo Lee(2002), “Evaluation of cutter orientations in 5-axis high speed milling of turbine blade.” International Journal of Materials Processing Technology, Vol. 130-131, pp.401-406
    11.林子寬,「鞋楦精加工4軸NC程式之產生」(2004),碩士論文,國立台灣科技大學機械工程研究所,台北市。
    12.Erdem Ozturk, L. Taner Tunc and Erhan Budak(2009), “Investigation of lead and tilt angle effects in 5-axis ball-end milling processes.” Internal Journal of Mahcine Tools & Manufacture, Vol. 49, pp. 1053-1052
    13.Jiing-Yih Lai and Kuo-Jen Chen(2007), “Localization of parts with irregular shape for CMM inspection.” International Journal of Advanced Manufacturing Technology, Vol. 32, pp. 1188-1200
    14.林子寬,「以球面雙圓法推導五軸加工之旋轉角通用公式」(2013),博士論文,國立台灣科技大學機械工程研究所,台北市。

    QR CODE