簡易檢索 / 詳目顯示

研究生: 吳雅婷
Ya-ting Wu
論文名稱: 電漿氧化成長氧化鋁與氧化鋁-氧化銅介電層之單極式電阻切換研究
Investigation of Unipolar Resistive Switching AlOx and AlOx+CuOx Dielectric Layers Growth by Plasma Oxidation
指導教授: 周賢鎧
Shyankay Jou
口試委員: 周振嘉
Chen-Chia Chou
何志浩
Jr Hau He
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 135
中文關鍵詞: 濺鍍電漿氧化燈絲導通AlOx氧化層電阻式記憶體
外文關鍵詞: Sputtering, plasma oxidation, filament conduction, ReRAM
相關次數: 點閱:202下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以Al與Al(Cu 5wt%)靶材濺鍍沉積下電極層,以RF與MW電漿氧化的方式成長電阻層,上電極皆以Al濺鍍,製成Al/AlOx/Al、Al/AlOx+CuOx/Al(Cu 5wt%)三層結構之電阻式記憶體,探討摻Cu對元件的結構與電性之影響。本實驗電極層材料選用Al與摻Cu之Al兩種金屬,與在半導體工業界常用摻1%Cu的Al導線相近,此材料可以直接應用在積體電路製程上。
    當Al/AlOx/Al元件未摻入Cu時,電阻切換操作的 set與reset電壓與電流範圍較不穩定,電阻操作次數約10次左右。當元件下電極摻入Cu時,元件操作之電壓電流穩定,且可循環操作至數百次,高低電阻比值可達10^5倍。高電阻態之電性分析結果認為在低電壓時元件皆為Ohmic導通,高電壓時未摻Cu之元件符合Poole-Frenkel 發射機制;有摻Cu之元件高電壓處以Child’ s law做傳導,與低電壓部分之Ohmic導通合稱空間電荷傳導(Space charge limit current, SCLC);另一方面,低電阻狀態則皆為Ohmic導通之燈絲型態。在耐性測試方面,有摻Cu之元件耐性較佳,記憶的資訊可儲存長達10年,不會因重複的讀取而損壞。
    由XPS與升溫測試推測,本實驗電漿氧化出之電阻層有未氧化之Al,所以以電阻層中以Al作為主要的導電燈絲成分;當元件電阻層中有Cu存在時,會在接近下電極處開始形成與Al混和的燈絲,因此使得後續電阻切換時切斷與連結燈絲較容易,電性掃描較為穩定。


    To study electrical properties and structural effects on the resistance switch of AlO-based resistance random access memory (ReRAM), we fabricated Al/AlOx/Al and Al/AlOx+CuOx/Al(Cu 5wt%) three-layer structures. The bottom electrode layers were prepared by sputtering Al and Al(Cu 5wt%) target, respectively. The oxide resistor layers were formed by RF and MW plasma oxidation of the bottom electrodes, and top electrode layers were generated by sputtering Al target. In this study, we utilized Al and Cu-doped Al as the electrode layers. They are compatible to Al 1% Cu, which has been utilized for interconnects, in the integrated circuit process.
    The resistance switching operation such as set-reset voltages and current ranges was unstable for the Al/AlOx/Al devices, and it was operated for just about 10 times. When Cu was introduced in the Al/AlOx+CuOx/Al(Cu 5wt%), set-reset voltages and current ranges were stable, and the device could be switched for hundreds of times. The ratio of high resistance state (HRS) and low resistance state (LRS) value for the Al/AlOx+CuOx/Al(Cu 5wt%) is about 105. HRS of these devices were Ohmic conduction at low operation voltages. At high operation voltages, the conduction mechanism was Poole-Frenkel emission for the Al/AlOx/Al, and Child’ law for the Al/AlOx+CuOx/Al(Cu 5wt%) (Ohmic conduction followed by Child’s law is also called Space-charge-limit-current mechanism). LRS of both devices followed Ohmic conduction. In retention test, the device doped with Cu can store information up to 10 years, and it won’t vanish due to repeat readind.
    XPS analysis and temperature tests showed that Al was not oxidized completely during plasma oxidation. Unoxidized Al possibly was the major component in the conduction filament. When the device was doped with Cu, the components of the conduction filament was mixtures of Al and Cu, thus the filament would link and break easier, and the switching process would be more stable.

    摘 要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 第一章 前言 1 第二章 文獻回顧 2 2.1 非揮發式記憶體 (Non-Volatile Random Access Memory) 2 2.1.1鐵電式記憶體(Ferroelectric Random Access Memory, FeRAM) 2 2.1.2相變化式記憶體(Phase-Change Random Access Memory, PRAM) 2 2.1.3磁阻式記憶體(Magnetoresistive Random Access Memory, MRAM) 2 2.1.4 電阻式記憶體(Resistive Random Access Memory, ReRAM) 3 2.2 電阻式記憶體的電阻轉換機構與導電機制 5 2.2.1 導電機構介紹 5 2.2.2 導電機制介紹 9 2.3 Al2O3之電阻切換研究 16 2.3.1純Al2O3 16 2.3.2摻雜其他元素的Al2O3 20 2.4 其他介電層摻雜Cu之研究 24 2.5 研究動機 30 第三章 實驗方法與步驟 31 3.1 實驗流程 31 3.1.1 基材清洗 32 3.1.2 磁控式濺鍍鍍膜 32 3.1.3 電漿氧化 34 3.1.4 TEM截面試片製備 36 3.2 實驗儀器簡介 39 3.2.1真空濺鍍製程 39 3.2.2 電漿氧化製程 41 3.3 實驗分析儀器簡介 43 3.3.1 膜厚量測(α-step) 43 3.3.2 X光繞射分析儀 (X-ray Diffractometer) 44 3.2.3 掃描式電子顯微鏡 (Scanning Electron Microscope) 45 3.3.4 X光電子分析儀 (X-ray Photoelectron Spectrum) 46 3.3.5 穿透式電子顯微鏡 (Transmission Electron Microscopy) 47 3.3.6 原子力顯微鏡 (Atomic Force Microscopy) 48 3.4實驗儀器簡表 49 3.5實驗耗材簡表 50 3.6 分析與鑑定 51 3.6.1 薄膜厚度分析 51 3.6.2 薄膜成分分析 51 3.6.3 薄膜表面型態分析 51 3.6.4 截面型態分析 51 3.6.5 電性量測 52 第四章 結果與討論 54 4.1 以MW電漿氧化AlOx與AlOx+CuOx介電層特性分析 54 4.1.1 介電層成分分析 54 4.1.2 介電層結構分析 65 4.1.3介電層表面型態分析 73 4.1.4 摻雜Cu對元件的影響 76 4.2 以MW電漿氧化電阻層之元件電性量測 78 4.2.1 元件掃描路徑分析 78 4.2.2 導電機制分析 82 4.2.3 耐性測試 85 4.2.4 導電燈絲成分分析 89 4.3 以RF電漿處理對元件的影響 94 第五章 結論 99 第六章 未來展望 100 參考文獻 101 附錄 109 Al-Cu Phase Diagram 109 Al-O Phase Diagram 109 JCPDs Card - Al 110 JCPDs Card - Cu 111 JCPDs Card - Al2Cu 112 JCPDs Card - Al2O3 113 JCPDs Card – CuO 114 JCPDs Card – Cu2O 115 Spectrum of XPS – O 116 Spectrum of XPS – Al 117 Spectrum of XPS – Cu 118

    [1]M. Muneeb, I. Akram, A. Nazir “Non-Volatile Random Access Memory Technologies (MRAM, FeRAM, PRAM)”, KTH Vetenskap och Konst, Smart Electronic Materials,06 ,1 (2006).
    [2]A. Sawa, “Resistive switching in transition metal oxides”, Materials Today, 11, 6 (2008).
    [3]H. Akinaga, H. Shima, “Resistive Random Access Memory (ReRAM) Based on Metal Oxides”, Proceedings of the IEEE, 98, 12 (2010).
    [4]利嘉仁,「共濺鍍法沉積銅摻雜二氧化矽薄膜的電阻切換特性之研究」,國立台灣科技大學工程科技研究所碩士論文,民國99年。
    [5]栗漢翔,「以氧化鋯和氧化鋯-氧化鎳薄膜為介電層進行單極式電阻切換研究」,國立台灣科技大學工程科技研究所碩士論文,民國100年。
    [6]韓明恩,「介面氮氧化鉭氧化層對銅摻雜二氧化矽電阻切換性質的影響」,國立台灣科技大學工程科技研究所碩士論文,民國100年。
    [7]蔡濬名,「氧化鋅薄膜於非揮發電阻式記憶體特性之研究」,國立清華大學材料科學與工程學研究所碩士論文,民國97年。
    [8]X. Wu, P. Zhou, J. Li, L. Chen, H. Lv, Y. Lin, T. Tang, “Reproducible Unipolar Resistance Switching in Stoichiometric ZrO2 Films”, Applied Physics Letters, 90, 183507 (2007).
    [9]J. Son, Y. Shin, “Direct Observation of Conducting Filaments on Resistive Switching of NiO Thin Films”, Applied Physics Letters, 92, 222106 (2008).
    [10]L. Goux, J. Lisoni, M. Jurczak, D. Wouters, L. Courtade, C. Muller, “Coexistence of the Bipolar and Unipolar Resistive-Switching Modes in NiO Cells Made by Thermal Oxidation of Ni Layers”, Journal of Applied Physics, 107, 024512 (2010).
    [11]W. Zhu, T. Chen, Z. Liu, M. Yang, S. Fung, “Resistive Switching in Aluminum/ Anodized Aluminum Film Structure Without Forming Process”, Journal of Applied Physics, 106, 093706 (2009).
    [12]S. Kim, O. Yarimaga, S. Choi, Y. Choi, “Highly Durable and Flexible Memory Based on Resistance Switching”, Solod-State Electronics, 54,18 (2010).
    [13]S. Kim, H. Jeong, S. Choi, Y. Choi, “Comprehensive Modeling of Resistive Switching in the Al/TiOx/TiO2/Al Heterostructure Based on Space-Charge-Limited Conduction”, Applied Physics Letters, 97, 033508 (2010).
    [14]H. Jeong, Y. Kim, J. Lee, S. Choi, “A Low-Temperature-Grown TiO2-Based Device for the Flexible stacked RRAM Application”, Nanotechnology, 21, 115203 (2010).
    [15]M. Yang, J. Park, T. Ko, J. Lee, “Bipolar Resistive Switching Behavior in Ti/MnO2/Pt Structure for Nonvolatile Memory Devices”, Applied Physics Letters, 95, 042105 (2009).
    [16]Z. Wei, T. Takagi, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, K. Aono, “Demonstration of High-Density ReRAM Ensuring 10-Year Retention at 85℃ Based on a Newly Developed Reliability Model”, 2011 IEDM Technical Program , Session 31, 4, Washington, USA, 4 Dec (2011).
    [17]G. Park, X. Li, D. Kim, R. Jung, M. Lee, S. Seo, “Observation of Electric-Field induced Ni Filament Channels in Polycrystalline NiOx Film”, Applied Physics Letters, 91, 222103 (2007).
    [18]R. Waser, “Resistive Non-Volatile Memory Devices”, Microelectronic Engineering, 86, 1925 (2009).
    [19]C. Schindler, G. Staikov, R. Waser, “Electrode Kinetics of Cu-SiO2-Based Resistive Switching Cells: Overcoming the Voltage-Time dilemma of Electrochemical Metallization memories”, Applied Physics Letters, 94, 072109 (2009).
    [20]C. Schindler, S. Thermadam, R. Waser, M. Kozichi, “Bipolar and Unipolar Resistive Switching in Cu-Dpoed SiO2”, IEEE Transaction on Electron Devices, 54, 10 (2007).
    [21]B. Streetman, S. Banerjee, Solid State Electronic Devices, Pearson Education International, 6th edition, USA (2006).
    [22]J. Ranuarez, M. Deen, C. Chen, “A Review of Gate Tunneling Current in MOS Devices”, Microelectronics Relibility, 46, 1939 (2006).
    [23]R. Flower, F. S., D. Nordheim, “Electron Emission in Intense Electric Fields”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119, 781 (1928).
    [24]K. Schuegra, C. Hu, “Metal-Oxide-Semiconductor Field-Effect-Transistor Substrate Current During Fowler-Nordheim Tunneling stress and Silicon dioxide Relibility”, Journal of Applied Physics, 76, 6 (1994).
    [25]P. Stallinga, Electrical Characterization of Organic Electronic Materials and Devices, Wiley, USA (2009).
    [26]A. Rose, ”Space-Charge-Limited Current in Solids”, Physcial Review, 97, 1538 (1954).
    [27]陳露妮,「製程參數對Al(Bi4Ti3O12+V2O5)/Ba(Zr0.1Ti0.9)O3/Si結構電特性之影響及其於非揮發性記憶元件之應用」,國立中山大學電機工程學系碩士論文 ,民國95年。
    [28]Y. Lai, C. Tu, D. Kwong, J. Chen, “Charge-Transport Characteristics in Bistable Resistive Poly(N-Vinylcarbazole) Films”, IEEE Electron Device Letters, 27, 6 (2006).
    [29]T. Malik, R. Latif, “Ohmic and Space-Charge limited Conduction in Cobalt Phthalocyanine Thin Films”, Thin Solid Films, 305, 336 (1997).
    [30]W. Harrell, J. Frey, “Observation of Poole-Frankel Effect Saturation in SiO¬2 and Other Insulating Films”, Thin Solid Films, 352, 195 (1999).
    [31]W. Chang, Y. Lai, T. Wu, S. Wang, F. Chen, “Unipolar Resistive Switching Characteristics of ZnO thin Films for nonvolatile Memory Applications”, Applied Physics Letters, 92, 022110 (2008).
    [32]J. Song, A. Inamdar, B. Jang, K. Jeon, Y. Kim, K. Jung, Y. Kim, H. Im, W. Jung, H. Kim, J. Hong, “Effects of Ultrathin Al Layer Insection on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory”, Applied Physics Express, 3, 091101 (2010).
    [33]劉凱元,「鋁電極電阻式隨機存取記憶體單胞元之製作與特性研究」,國立中央大學電機工程學系碩士論文,民國99年。
    [34]Q. Sun, J. Gu, L. Chen, P. Zhou, P. Wang, S. Ding, D. Zhang, “Controllable Filament with Electric Field Engineering for Resistive Switching Uniformity”, IEEE Electron Device Letters, 32, 9 (2011).
    [35]D. Lee, D. Seong, H. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. Seo, S. Heo, M. Jo, D. Hwang, H. Park, M. Chang, M. Hasan, H. Hwang, “Excellent uniformity and Reproducible Resistance Switching Characteristics of Doped Binary Metal Oxides for Non-Volatile Resistance Memory Applications”, IEEE International Electron Devices Meeting, IEDM '06., 1, 11-13 Dec (2006).
    [36]S. Kim, Y. Choi, “Resistive Switching of Aluminum oxide for flexible memory”, Applied Physics Letters, 92, 223508 (2008).
    [37]Y. Wu, B. Lee, H. Wong, “Ultra-Low Power Al2O3-Based RRAM with 1μA Reset Current”, IEEE Electron Device Letters, 10, 136 (2010).
    [38]Y. Tsai, T. Chang, C. Lin, S. Chen, C. Chen, S. Sze, F. Yeh, T. Tseng, “Influence of Nanocrystals on Resistive Switching Characteristic in Binary Metal Oxide Memory Devices”, Electrochemical and Solid-State Letters, 14,3 (2011).
    [39]L. Chen, H. Gou, Q. Sun, P. Zhou, H. Lu, P. Wang, S. Ding, D. Zhang, “Enhancement of Resistive Switching Characteristics in Al2O3-Based RRAM with Embedded Ruthenium Nanocrystals”, IEEE Electron Device Letters, 32, 6 (2011).
    [40]Y. Chen, K. Pey, K. Goh, Z. Lwin, P. Singh, S. Mahapatra, “Tri-Level Resistive Switching in Metal-Nanocrystal-Based Al2O3/SiO2 Gate Stack”, IEEE Transactions on Electron Device, 57, 11 (2010).[41]C. Li, S. Jou, W. Chen, “Effect of Pt and Al Electrodes on Resistive Switching Properties of Sputter-Deposited Cu-Doped SiO2 Film”, Japanese Journal of Applied Physics, 50, 01BG08 (2011).
    [42]D. Lee, D. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, H. Hwang, “Resistance Switching of Copper Doped MoOx Films for Nonvolatile Memory Applications”, Applied Physics Letters, 90, 122104 (2007).
    [43]W. Guan, S. Long, Q. Liu, M. Liu, W. Wang, “Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2”, IEEE Electron Device Letters, 29, 5 (2008).
    [44]P. Yang, T. Chang, S. Chen, Y. Lin, H. Huang, D. Gan, “Influence of Bias-Induced Copper Diffusion on the Resistive Switching Characteristics of a SiON Thin Film”, Electrochemical and Solid-State Letters, 14, 2 (2011).
    [45]Y. Wang, Q. Li, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, “Investigation of Resistive Switching in Cu-Doped HfO2 Thin Film for Multilevel Non-Volatile Memory Applications”, Nanotechnology, 21, 045202 (2010).
    [46]B. Chapman, Glow Discharge Process, Wiley-Interscience Publication, USA (1980).
    [47]陳枝政,「電漿氧化製備銅氧化物及銅-二氧化矽複合材料之太陽能選擇性吸收膜之性質研究」,國立台灣科技大學工程科技研究所碩士論文,民國98年。
    [48]B. Cullity, S. Stock, Element of X-Ray Diffraction, Prentice Hall, 3rd Edition, USA (2001).
    [49]吳泰伯、許樹恩,「X光繞射原理與材料結構分析」,中國材料科學學會,台灣,民國95年。
    [50]D. O’Connor, B. Sexton, R. Smart, Surface Analysis Methods in Materials Science, Springer, 2nd Edition, USA (2003).
    [51]詹益明,「氧化亞銅-氧化鋅異質接面太陽能電池之研製」,國立台灣科技大學工程科技研究所碩士論文,民國99年。
    [52]鮑忠興、劉思謙,「近代穿透式電子顯微鏡實務」,滄海書局,台灣,民國99年。
    [53]I. Popova, V. Zhukov, J. Yates, “Electrostatic Field Enhancement of Al(111) oxidation”, Physical Review Letters, 89, 276101 (2002).
    [54]F. Lu, H. Tsai, Y. Chieh, “Plasma Oxidation of Al Thin Films on Si Substrates”, Thin Solid Film, 516, 1871 (2008).
    [55]M. Li, M. Su, T. Chang, B. Tsai, W. Tsai, H. Wu, P. Chung, T. Yang, H. Yen, “Morphology Evolution in TiN/Al-0.5Cu/Ti Interconnection During Chamber Long Stay and Post-Deposition Annealing Correlated to Defect Formation in Metallization Processing”, Microelectronic Engineering, 85, 1502 (2008).
    [56]L. Reddy, Principles Of Engineering Metallurgy, New Age International,USA (2001).
    [57]M. Ashby, D. Jones, Materials 2. Microstructure and Implemention, DUNOD, Paris (1991).
    [58]J. Idrac, C. Blanc, Y. Kihn, M. Lafont, G. Mankowski, P. Skeldon, G. Thompson, “Electrochemical Behavior of Magnetron-Sputtered Al-Cu Alloy Films in Sulfate Solutions”, Journal of The Electrochemical Society, 154, C286 (2007).
    [59]A. Meetsma, J. Boer, S. Smaalen, “Refinement of the Crystal Structure of Tetragonal Al2Cu”, Journal of Solid State Chemistry, 83, 370 (1989).
    [60]W. Osorio, J. Spinelli, C. Freire, M. Cardona, A. Garcia, “The Roles of Al2Cu and of Dendritic Refinement of Surface Corrosion Resistance of Hypoeutectic Al-Cu Alloys Immersed in H2SO4”, Journal of Alloys and Compounds, 443, 87 (2007).
    [61]M. Park, S. Krause, “Dynamic Precipitation Process of Al2Cu in Al-Cu Thin Films by in situ Transmission Electron Microscopy” , Journal of Applied Physics, 64, 6 (1994).
    [62]K. Jacob, C. Alcock, “Thermodynamics of CuAlO2 and CuAlO4 and Phase Equilibria in the System Cu2O-CuO-Al2O3”, Journal of the American Ceramic Society, 58, 5 (1975).
    [63]J. Antula, “Hot-Electron Concept for Poole-Frenkel Conduction in Amorphous Dielectric Solids”, Journal of Applied Physics, 43, 11 (1972).
    [64]J. Perkins, L. Collins, “Resistive Layers Formed by Ion Implantation into Metal Films”, Thin Solid Films, 5, R59 (1970).
    [65]J. Antula, “Method for Doping Thin Insulating Films and the Comparison between the Electrical Characteristics of Undoped and Doped Films”, Journal of Applied Physics, 42, 2081 (1971).
    [66]H. Sim, D. Choi, D. Lee, S. Seo, M. Lee, I. Yoo, H. Hwng, “Resistance-Switching Characteristics of Polycrystalline Nb2O5 for Nonvolatile Memory Application”, IEEE Electron Device Letters, 26, 5 (2005).
    [67]W. Banerjee, S. Maikap, S. Rahaman, A. Prakash, T. Tien, C. Li, J. Yang, “Improved Resistive Switching Memory Characteristics Using Core-Shell IrOx Nano-Dots in Al2O3/WOx Bilayer Structure”, Journal of Electrochemical Society, 159, 2 (2012).

    QR CODE