簡易檢索 / 詳目顯示

研究生: 陳浚沂
Jyun-Yi Chen
論文名稱: 新穎四元III-V族化合物半導體GaAsPSb及其InGaP/GaAsPSb/GaAs雙異質接面雙極性電晶體之光學特性
Optical characterization of a novel quaternary compound GaAsPSb and InGaP/GaAsPSb/GaAs NpN double heterojunction bipolar transistor structure
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 趙良君
Liang -Chiun Chao
林浩雄
Hao-Hsiung Lin
程光蛟
Kwong-Kau Tiong
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 63
中文關鍵詞: 銻磷砷化鎵第二型態能帶位準雙異質接面雙極性電晶體光子調製反射光譜無接點式電場調製反射光譜
外文關鍵詞: GaAsPSb, type-II band alignment, double heterojunction bipolar transistor, photoreflectance, contactless electroreflectance
相關次數: 點閱:198下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用非破壞式光學量測技術,探討新穎四元化合物 GaAsPSb 薄膜與 InGaP/GaAsPSb/GaAs 雙異質接面雙極性電晶體 (double heterojunction bipolar transistor,簡稱DHBT) 之特性。實驗所量測的樣品是以有機金屬化學氣相沉積法 (metal organic chemical vapor deposition,簡稱MOCVD) 成長於 GaAs 基板上。藉由光激發螢光 (photoluminescence,簡稱PL) 的功率相依性及溫度相依性實驗分析 GaAs/GaAsPSb/GaAs 可得到異質接面與發光相關的訊息,得知 GaAsPSb/GaAs 之接面為第二型態位準 (type-II band alignment)及此新穎材料 GaAsPSb 在室溫下能隙大小約為 1.26 eV,並由PL溫度相依性實驗可以觀察到 GaAsPSb 近能隙發光對溫度的變化趨勢近似於 GaAs。
利用 GaAsPSb 取代傳統的 GaAs 基極之 InGaP/GaAs 異質接面雙極性電晶體,成為一種新穎的 InGaP/GaAsPSb/GaAs NpN DHBT,可降低啟動電壓並提高電子遷移率,並利用光子調制 (photoreflectance,簡稱PR) 與電場調制 (contactless electroreflectance,簡稱CER) 反射光譜研究 InGaP/GaAsPSb/GaAs NpN DHBT,可以經由分析 (Franz-Keldysh oscillations,簡稱FKO) 信號,可以估算出集極/基極和射極/基極區域的內建電場,並利用極化實驗的結果,探討射極區 InGaP 排序相關特性。


The optical properties of a novel quaternary GaAsPSb compound were characterized using non-destructive optical measurement techniques. The samples were grown by metal-organic vapor-phase epitaxy on GaAs substrates. Interfacial characteristics of GaAs/GaAsPSb/GaAs heterostructures and emission properties of a quaternary GaAsPSb layer were studied by excitation-power- and temperature-dependent photoluminescence (PL) measurements. The GaAs-to-GaAsPSb upper interface related emission feature and signals from GaAsPSb and GaAs were observed and characterized. The upper interface related emission peak was attributed to the radiative recombination of spatially separated electron-hole pairs and suggested the type-II alignment at the GaAs/GaAsPSb interface. The temperature variation of the band edge emission signal of GaAsPSb was found to follow that of GaAs closely.
The GaAsPSb was replaced the traditional GaAs base of InGaP/GaAs HBT structure and fabricated a novel InGaP/GaAsPSb/GaAs DHBT. The InGaP/GaAsPSb/GaAs NpN DHBT structure were characterized using the techniques of polarization dependent photoreflectanc (PR) and contactless electroreflectance (CER) spectroscopy. From the observed Franz-Keldysh oscillations (FKOs), the electric fields in the collector/base and emitter/base regions were evaluated. The ordering parameter of the InGaP was deduced from the polarization dependence of the signals from the InGaP emitter region.

中文摘要 I 英文摘要 II 目錄 III 圖索引 IV 表索引 VI 第一章 緒論 1 1.1 研究背景 1 1.2 HBT之發展趨勢 2 1.3 研究主題及方法 4 第二章 光學量測技術 10 2.1 光激發螢光光譜 10 2.2 電場與Franz-Keldysh Oscillations 13 2.3 調制光譜及極化量測技巧 15 2.4 調製光譜量測系統 20 第三章 GaAsPSb光學特性 28 3.1 樣品簡介 28 3.2 GaAsPSb之光學特性 28 3.3 GaAs/GaAsPSb之異質接面 42 第四章 InGaP/GaAsPSb/GaAs DHBT光學特性 47 4.1 InGaP之有序程度 47 4.2 內建電場 48 第五章 結論 57 參考文獻 58

[1] L. P. Ramberg, P. M. Enquist, Y.-K. Chen, F. E. Najjar, L. F. Eastman, and E. A. Fitzgerald, "Lattice-strained heterojunction InGaAs/GaAs bipolar structures: Recombination properties and device performance," Applied Physics Letters, vol. 61, pp. 1234-1236, 1987.
[2] T. Oka, T. Mishima, and M. Kudo, "Low turn-on voltage GaAs heterojunction bipolar transistors with a pseudomorphic GaAsSb base," Applied Physics Letters, vol. 78, pp. 483-485, 2001.
[3] C. C. Cheung, B. P. Yan, C. C. Hsu, and E. S. Yang, "Novel InGaP/GaAsSb/GaAs DHBTs," IEEE Electron Devices and Solid-State Circuits Conference Proceedings, pp. 339-342, 2003.
[4] R. E. Welser, P. M. DeLuca, and N. Pan, "Turn-on voltage investigationof GaAs-based bipolar transistors with Ga1−xInxAs1−yNy base layers," IEEE Electron Device Letters, vol. 21, pp. 554-556, 2000.
[5] K. L. Lew, S. F. Yoon, H. Wang, S. Wicaksono, J. A. Gupta, and S. P. McAlister, "High-gain low turn-on voltage AlGaAs/GaAsNSb/GaAs heterojunction bipolar transistors grown by molecular beam epitaxy," IEEE Electron Device Letters, vol. 28, pp. 1083-1085, 2007.
[6] E. Lendvay, T. Gorog, L. Andor, L. Petras, and A. L. Toth, "A novel double heterostructure: the GaAs/GaPAsSb system," Journal of Crystal Growth, vol. 79, pp. 928-934, 1986.
[7] S. R. Johnson, P. Dowd, W. Braun, U. Koelle, C. M. Ryu, and M. Beaudoin, "Long Wavelength Pseudomorphic InGaPAsSb Type-I and Type-II Active Layers Grown on GaAs," Journal of Vacuum Science & Technology B, vol. 18, 2000.
[8] P. Dowd, W. Braun, D. J. Smith, C. M. Ryu, C.-Z. Guo, and S. L. Chen, "Long wavelength (1.3 and 1.5 μm) photoluminescence from InGaAs/GaPAsSb quantum wells grown on GaAs," Applied Physics Letters, vol. 75, 1999.
[9] Y. C. Chin, H. H. Lin, and C. H. Huang, "InGaP/GaAs0.57P0.28Sb0.15/GaAs double HBT with weakly type-II base/collector junction," IEEE Electron Device Letters, vol. 33, pp. 489-491, 2012.
[10] J. S.Yuan, "SiGe, GaAs and InP heterojunction bipolar transistors," John Wiley and Sons, pp. 2-3, 1999.
[11] H. Kroemer, "Theory of wide-gap emitter for transistor," Proceedings of the IEEE, vol. 45, pp. 1535-1537, 1957.
[12] H. Kroemer, "Heterostructure bipolar transistors and integrated circuit," Proceedings of the IEEE, vol. 70, pp. 13-16, 1982.
[13] D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbe, and J. Y.-C. Sun, "Si/SiGe epitaxial-base transistors. II. Process integration and analog applications," IEEE Transactions on Electron Devices, vol. 42, pp. 469-482, 1995.
[14] Y. S. Huang, W. D. S. F. H. Pollak, J. L. Freeouf, I. D. Calder, and R. E. Mallard, "Contactless electroreflectance characterization of GaInP/GaAs heterojunction bipolar transistor structures," Applied Physics Letters, vol. 73, pp. 213-214, 1998.
[15] T. Kobayashi, K. Taira, F. Nakamura, and H. Kawai, "Band lineup for a GaInP/GaAs heterojunction measured by a high-gain NpN heterojunction bipolar transistor grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 65, pp. 4898-4902, 1989.
[16] S. H. Wei and A. Zunger, "Fingerprints of CuPt ordering in Ⅲ-Ⅴ semiconductor alloys:valence-band splittings, band-gap reduction, and X-Ray structure factors," Physical Review B, vol. 57, pp. 8983-8988, 1998.
[17] P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour, "InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor," Applied Physics Letters, vol. 76, pp. 2262-2264, 2000.
[18] N. Y. LI, C. P. Hains, K. Yang, J. Lu, J. Cheng, and P. W. Li, "Organometallic vapor phase epitaxy growth and optical characteristics of almost 1.2 um GaInNAs three-quantum-well laser diodes," Applied Physics Letters, vol. 75, pp. 1051-1053, 1999.
[19] T. Nishino, Y. Hamakawa, M. Kondow, and Y. Minagawa, "Electroreflectance dtudy of ordered Ga0.5In0.5P alloys grown on GaAs by organometallic vapor phase epitaxy," Applied Physics Letters, vol. 53, pp. 583-585, 1988.
[20] M. Kondow, H. Kakibayashi, S. Minagawa, Y. Inoue, T. Nishino, and Y. Hamakawa, "Influence of growth temperature on crystalline structure in Ga0.5In0.5P grown by organometallic vapor phase epitaxy," Applied Physics Letters, vol. 53, pp. 2053-2055, 1988.
[21] M. Nakajima, A. Takamori, T. Yokotsuka, K. Uchiyama, and T. Abe, "Study of AlInP and GaInP grown by gas source molecular beam epitaxy," Journal of Crystal Growth, vol. 105, pp. 116-123, 1990.
[22] F. Scholz, C. Geng, M. Burkard, H.-P. Gauggel, H. Schweizer, and R. Wirth, "Ordering in InGaP:Is It Relevant for Device?," Physica E, vol. 2, pp. 8-14, 1998.
[23] I. D. Calder, E. M. Griswold, and G. Hillier, "Characterization and control of epitaxial material for HBT manufacturing," Compound Semicond, vol. 5, pp. 36-41, 1999.
[24] B. O. Seraphin, "The effect of an electric field on reflectivity of germanium," Applied Physics Letters, vol. 36, pp. 2242-2251, 1964.
[25] F. H. Pollak and H. Shen, "Modulation spectroscopy of semiconductor : bulk/thin film, microstructures, surface/interface and devices," Materials Science and Engineering: R: Reports, vol. 10, pp. 275-374, 1993.
[26] H. Mathieu, J. Allegre, and B. Gil, "Piezomodulation spectroscopy : a powerful investigation tool of heterostructures," Physical Review B, vol. 43, pp. 2218-2227, 1991.
[27] H. Shen, P. Parayanthal, Y. F. Lin, and F. H. Pollak, "New normalization procedure for modulation spectroscopy," Review of Scientific Instruments, vol. 58, pp. 1429-1432, 1987.
[28] M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, "Optical properties of strained antimonide-based heterostructures," Applied Physics Letters, vol. 94, pp. 1506-1512, 2003.
[29] Y. P. Varshni, "Temperature dependence of energy gap in semiconductors," Physica, vol. 34, pp. 149-154 1967.
[30] P. Lantenschlager, M. Garriga, S. Logothetidis, and M. Cordona, "Interband critical points of GaAs and their temperature dependence," Physical Review B, vol. 35, pp. 9174-9189, 1987.
[31] H. Shen, S. H. Pan, Z. Hang, J. Leng, F. H. Pollak, and J. M. Woodall, "Photoreflectance of GaAs and Ga0.82Al0.18As at elevated temperatures up to 600 °C," Applied Physics Letters, vol. 53, pp. 1080-1083, 1988.
[32] M. B. Panish and H. C. Casey, "Temperature dependence of the energy gap in GaAs and GaP," Applied Physics Letters, vol. 40, pp. 163-166, 1969.
[33] M. Muňoz, F. H. Pollak, M. B. Zakia, N. B. Patel, and J. L. Herrera-Perez, "Temperature dependence of the energy and broadening parameter of the fundamental band gap of GaSb and Ga1-xInxAsySb1-y/GaSb (0.07 <= x <= 0.22, 0.05 <= y <= 0.19) quaternary alloys using infrared photoreflectance," Physical Review B, vol. 62, pp. 16600-16604, 2000.
[34] Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, "Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells," Applied Physics Letters, vol. 92, pp. 5810-3814, 2002.
[35] T. Schmidt, K. Lischka, and W. Zulehner, "Excitation-power dependence of the near-band-edge photoluminescence of semiconductors," Physical Review B, vol. 45, pp. 8989–8994, 1992.
[36] P. Ernst, C. Geng, F. Scholz, H. Schweizer, Y. Zhang, and A. Mascarenhas, "Band-gap reduction and valence-band splitting of ordered GaInP2," Applied Physics Letters, vol. 67, pp. 2347-2349, 1995.
[37] O. Madelung, M. Schulz, and Landolt-Bornstein, "Numerical data and functional relationships in science and technology," New Series, Group III, vol. 22a, 1987.
[38] A. Lindell, M. Pessa, A. Salokatve, F. Bernardini, R. M. Nieminen, and M. Paalanen, "Band offsets at the GaInP/GaAs heterojunction," Applied Physics Letters, vol. 82, pp. 3374-3380, 1997.

QR CODE