簡易檢索 / 詳目顯示

研究生: 張致烽
JR-FENG JANG
論文名稱: 雙足機器人穩定步行軌跡設計
The Design of a stable walking trajectory for a Biped Robot
指導教授: 施慶隆
Ching-Long Shih
口試委員: 劉昌煥
Chang-Huan Liu
李文猶
Wen-Yo Lee
羅啟維
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 穩定度補償運動軌跡規劃雙足步行
外文關鍵詞: Biped walking, trajectory planning, Compensatory motion, stability
相關次數: 點閱:173下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是設計一個能在不同環境下穩定行走之雙足機器人。機器人可依地形條件做出合適的步行運動,同時藉由平滑的腰部運動來保持步行之穩定性。規劃其步態模型包含足部與腰部的軌跡。先設定足部的邊界條件,在用三次方曲線來產生足部軌跡。接著一樣使用三次方曲線函數來設計平滑的腰部運動同時具有最大的穩定邊限,而此腰部軌跡是採疊代的方式求得。


    The main aim of this thesis is to develop a biped robot which walk stably in various enviroments. The robot can adapt to the ground conditions with suitable a foot motion, and maintain its stability by a smooth hip motion.A method is used to plan a walking pattern consisting of a foot trajectory and a hip trajectory. First, to formulate the constraints of a foot trajectory, and generate the foot trajectory by third-order spline. Then, to formulate a smooth hip motion using a third-order spline function with the largest stability margin, and derive the hip trajectory by iterative computation.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 文獻回顧 3 1.4 論文架構 5 第二章 機構設計與硬體規格 6 2.1 二足機器人之機構設計 6 2.2 硬體規格 7 2.2.1 伺服馬達 7 2.2.2 dsPIC30F6010微控制器 9 2.2.3 電池與電力驅動系統 10 2.2.4 壓力感測器 12 2.3 系統硬體架構 13 第三章 雙足步行機器人數學模型 14 3.1 機器人數學模型與假設 14 3.2 運動學介紹 16 3.3 順向運動學 16 3.4 逆向運動學 19 第四章 雙足步行機器人步行軌跡規劃 24 4.1 雙足機器人步行週期 24 4.2 步行軌跡規劃 25 4.3 步行參數介紹 25 4.3.1 步伐長度與抬腳高度 25 4.3.2 擺動足之離地角度與著地角度 26 4.4 擺動足軌跡曲線 28 4.4.1 使用三次方曲線函數之擺動足軌跡設計 31 4.4.2 擺動足軌跡模擬結果 34 4.5 腰部軌跡曲線 36 4.5.1腰部軌跡模擬結果 37 第五章 軀幹補償技術分析 38 5.1 雙足機器人之穩定性 38 5.1.1 於靜態步行模式之穩定步行 39 5.1.2 於動態步行模式之穩定步行 40 5.2 零力矩點 40 5.2.1零力矩點方程式 41 5.3 動態步行之軀幹補償技術 44 5.3.1 協助步行平衡之軀幹運動設計 44 5.4 為穩定步行之腰部運動設計 46 第六章 實驗結果 49 6.1 機器人步行實驗 49 第七章 結論與未來展望 61 7.1 結論 61 7.2 未來展望 61 參考文獻 62

    [1] M. Vukobratovic and D. Juricic, “Contribution to the Synthesis of Biped Gait” IEEE Transactions. on. Bio-. Medical Engineering,1969
    [2] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion” IEEE Trans. Bio-Med. Eng., vol. BME-21, no. 2, pp. 102-108, 1974.
    [3] Pratt , J. and Krupp, B, “Design of a bipedal walking robot” Proceedings of SPIE - The International Society for Optical Engineering , Vol. 6962, 2008
    [4] S. M. Song and K. J. Waldron, “An analytical approach for gait and its application on wave gaits” Int. J. Robot. Res., vol. 6, no. 2, pp. 60-71, 1987.
    [5] S. Kajita, A. Kobayashi, and T. Yamamura, “Dynamic walking control of a biped robot along a potential energy conserving orbit” IEEE Trans. Robot. Automat., vol. 8, pp. 431-438, Aug. 1992.
    [6] W. T. Miller and A. L. Kun, “Dynamic balance of a biped walking robot” Neural Systems for Robotics New York: Academic, 1997
    [7] M. Garica, A. Chatterjee, and A. Ruina, “Speed, efficiency, and stability of small-slope 2-D passive dynamic bipedal walking” in Proc. IEEE Int. Conf. Robotics and Automation, 1998
    [8] M. Y. Zarrugh and C. W. Radcliffe, “Computer generation of human gait kinematics,” J. Biomech., vol. 12, pp. 99-111, 1979.
    [9] L. Roussel, C. Canudas-de-Wit, and A. Goswami, “Generation of energy optimal complete gait cycles for biped robots” in Proc. IEEE Int. Conf. Robotics and Automation, 1998
    [10] T. McGeer, “Passive walking with knees” in Proc. IEEE Int. Conf. Robotics and Automation, 1990
    [11] Y. F. Zheng and J. Shen, “Gait synthesis for the SD-2 biped robot to climb sloping surface” IEEE Trans. Robot. Automat., vol. 6, pp. 86-96, Feb. 1990.
    [12] C. Chevallereau, A. Formal'sky, and B. Perrin, “Low energy cost reference trajectories for a biped robot” in Proc. IEEE Int. Conf. Robotics and Automation, 1998
    [13] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of honda humanoid robot” in Proc. IEEE Int. Conf. Robotics and Automation, 1998
    [14] A. Dasgupta and Y. Nakamura, “Making feasible walking motion of humanoid robots from human motion capture data” in Proc. IEEE Int. Conf. Robotics and Automation, 1999
    [15] Capi, G., Kaneko, S., Mitobe, K., Barolli, L., Nasu, Y.“Optimal trajectory generation for a prismatic joint biped robot using genetic algorithms” Robotics and Autonomous Systems, 38 (2), pp. 119-128.2002
    [16] Murakami, Shuta, Yamamoto, Eiji, Fujimoto, Kouji“Fuzzy control of dynamic biped walking robot”IEEE International Conference on Fuzzy Systems, 1, pp. 77-82.1995
    [17] Kajita, Shuuji, Tani, Kazuo“Experimental study of biped dynamic walking
    in the linear inverted pendulum mode”Proceedings - IEEE International
    Conference on Robotics and Automation, 3, pp. 2885-2891. 1995
    [18] Albert, A., Gerth, W.“Analytic path planning algorithms for bipedal robots
    without a trunk”Journal of Intelligent and Robotic Systemss, 36 (2), pp.
    109-127.2003
    [19] Jong H. Park and Kyoung D. Kim, “Biped Robot Walking Using
    Gravity-Compensated Inverted Pendulum Mode and Computed Torque
    Control”, Proceedings of the IEEE International Conference on Robotics
    and Automation vol. 4, pp. 3528–3533.1998
    [20] Ha.T,Choi,c.-H, “ An effective trajectory generation method for bipedal
    walking ”, Robotics and Autonomous Systems 55, pp. 795-810,2007
    [21] A. Takanishi, M. Ishida, Y. Yamazaki, and I. Kato, “ The realization of
    dynamic walking robot WL-10RD” in Proc. Int. Conf. on Advanced
    Robotics,1985
    [22] A. Takanishi,H,Karaki “Realization of Dynamic Walking under unknown external force ”,Proc.of IROS 90,1990
    [23] Takanishi, A., Yamaguchi, J., Iwata, M., Kasai, S., and Mizobuchi, “ Study on dynamic turning of biped walking robot ”. Proceedings of The 72nd JSME Spring Annual Meeting,1995
    [24] Yamaguchi, J.; Kinoshita, N.; Takanishi, A.; Kato, I., “Development of a dynamic biped walking system for humanoid development of a biped walking robot adapting to the humans' living floor” Robotics and Automation, 1996.

    無法下載圖示 全文公開日期 2013/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE