簡易檢索 / 詳目顯示

研究生: 黃子庭
Tzu-Ting Huang
論文名稱: 以CALPHAD方法預測Cu-Ni-Zr三元系統金屬玻璃形成區域
Prediction of Metallic Glass Formation Region for the Cu-Ni-Zr Ternary System by Using CALPHAD Method
指導教授: 顏怡文
Yee-wen Yen
口試委員: 飯久保智
Iikubo Satoshi
陳志銘
Chih-ming Chen
朱瑾
Jinn Chu
林士剛
Shih-kang Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 98
中文關鍵詞: 金屬玻璃Cu-Ni-Zr三元系統熱力學模型非晶區域
外文關鍵詞: bulk metallic glass, Cu-Ni-Zr ternary system, thermodynamic assessment, samorphous region
相關次數: 點閱:234下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

金屬玻璃擁有優異的機械性質使得近年來人們對於金屬玻璃的研究愈加多元。然而探討多元成分的金屬玻璃需要大量的人力物力的投入,因此在本研究盼以熱力學預測之方式獲得多元成分下金屬玻璃的形成區域。
本研究以CALPHAD方法進行研究,收先建立出符合實驗相圖的熱力學模型,再以亞穩定相圖預測金屬玻璃形成區域。銅基及鋯基金屬玻璃具有非常大的過冷液態區以及低成本、製成簡易等等優點而被選作實驗目標,另一方面鎳基非晶和金則有特殊的磁導性。本研究同時進行Cu-Ni-Zr的等溫平衡相圖以及計算相圖,並建立起熱力學模型應用於預測金屬玻璃形成區域上。
在未來此熱力學模型可以推廣到更多元的系統,並提供學術及業界良好的研究基礎。


Metallic glasses have outstanding mechanical properties which attract people sight on the application. Nowadays, investigations about metallic glasses are almost focus on multicomponent systems that require amount of resource to explore the formation region of metallic glasses.
Therefore, the main purpose in this study is to predict the formation region of metallic glasses by thermodynamic method, CALPHAD. First, the reasonable thermodynamic database will be constructed in comparison of experimental data. Metastable phase diagram is established to predict formation of metallic glasses region after all. Cu-based amorphous alloy is highly value of low-cost and large supercooled liquid region and same as Zr-based alloy allow them to produce in simple equipment. Ni-based amorphous alloys have good corrosion resistance, mechanical properties, thermal stability and magnetic properties. In this study, Cu-Ni-Zr ternary system is discussed thermodynamically for constructing isothermal phase diagram and predicted region of metallic glasses.
Furthermore, with the thermodynamic database, the multicomponent system could be established by the previous work as foundation. The expense and time of metallic glasses researches would be saved and promote the development of metallic glasses application in industries.

Abstract List of Figure List of Table Chapter 1 Introduction Chapter 2 Literature Review 2.1 Metallic Glasses 2.1.1 Properties of Metallic Glasses 2.1.2 Application 2.1.3 Cu-, Ni- and Zr-Based Amorphous Alloys 2.2 Equilibrium of Phase Diagrams 2.2.1 Binary System 2.2.2 Cu-Ni-Zr Ternary System Chapter 3 Experimental 3.1 Experimental Phase Diagram 3.1.1 Isothermal Phase Diagram 3.1.2 Forming Region of Cu-Ni-Zr Bulk Metallic Glasses 3.2 Calculation of Phase Diagram 3.2.1 CALPHAD Method 3.2.2 Thermodynamic modeling Chapter 4 Results and Discussion 4.1 Cu-Ni-Zr experimental ternary phase diagram 4.2 Cu-Ni-Zr Calculated Ternary Phase Diagram 4.3 Prediction of Bulk Metallic Glasses Chapter 5 Conclusion Appendix Reference

1. W.H. Zachariasen, The atomic arrangement in glass. Journal of the American Chemical Society, 1932. 54(10): p. 3841-3851.
2. 吳學陞, 新興材料-塊狀非晶質金屬材料工業材料.. 工業材料 1999,149 p.154-165.
3. W.H. Wang, C. Dong and C.H. Shek, Bulk metallic glasses. Materials Science & Engineering R-Reports, 2004. 44(2-3): p. 45-89.
4. J.P. Chu, C. L. Chiang, T. G. Nieh and Y. Kawamura, Superplasticity in a bulk amorphous Pd-40Ni-20P alloy: a compression study. Intermetallics, 2002. 10(11-12): p. 1191-1195.
5. G. Kumar, A. Desai and J. Schroers, Bulk Metallic Glass: The Smaller the Better. Advanced Materials, 2011. 23(4): p. 461-476.
6. W.L. Johnson, Bulk amorphous metal - An emerging engineering material. Jom-Journal of the Minerals Metals & Materials Society, 2002. 54(3): p. 40-43.
7. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000. 48(1): p. 279-306.
8. A. Inoue, Bulk Amorphous Alloys: Practical Characteristics and Applications. 1999: Trans Tech Publications.
9. X.Y. Li, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami and K. Hashimoto, Electrochemical and XPS studies of the corrosion behavior of sputter-deposited amorphous Fe-Cr-Ni-Nb alloys in 6M HCl. Corrosion Science, 1999. 41(6): p. 1095-1118.
10. C. Zhang, N. Li, J. Pan, S. F. Guo, M. Zhang and L. Liu, Enhancement of glass-forming ability and bio-corrosion resistance of Zr-Co-Al bulk metallic glasses by the addition of Ag. Journal of Alloys and Compounds, 2010. 504: p. S163-S167.
11. A. Inoue, Bulk amorphous alloys with soft and hard magnetic properties. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1997. 226: p. 357-363.
12. A. Inoue, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. 1998: Trans Tech Publications.
13. A. Inoue, T. Zhang and T. Masumoto, Glass-Forming Ability of Alloys. Journal of Non-Crystalline Solids, 1993. 156: p. 473-480.
14. A. Inoue, T. Shibata and T. Zhang, Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys. Materials Transactions Jim, 1995. 36(12): p. 1420-1426.
15. A. Inoue, High-Strength Bulk Amorphous-Alloys with Low Critical Cooling Rates. Materials Transactions Jim, 1995. 36(7): p. 866-875.
16. H.K.D.H. Bhadeshia, Solid Solutions: The Hume-Rothery Rules. 2007.
17. B.R. Rao, Bulk metallic glasses: Materials of future. DRDO Science Spectrum, 2009: p. 212-218.
18. M.D. Ediger, C.A. Angell and S.R. Nagel, Supercooled liquids and glasses. Journal of Physical Chemistry, 1996. 100(31): p. 13200-13212.
19. H.S. Chen and D. Turnbull, Evidence of a Glass-Liquid Transition in a Gold-Germanium-Silicon Alloy. Journal of Chemical Physics, 1968. 48(6): p. 2560-&.
20. D. Turnbull, Under What Conditions Can a Glass Be Formed. Contemporary Physics, 1969. 10(5): p. 473-&.
21. G.W. Scherer, Glass formation and relaxation. VCH Verlagsgesellschaft mbH, Materials Science and Technology: a Comprehensive Treatment., 1991. 9: p. 119-173.
22. Z.P. Lu, Y. Li and S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids, 2000. 270(1-3): p. 103-114.
23. Z.P. Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia, 2002. 50(13): p. 3501-3512.
24. M. Onuki, A. Inouei, T. Yamaguchi and H. Minamiguchi, Production of Zr-based bulk glassy alloys with high strength and high toughness and their applications to golf clubs. Materia Japan(Japan), 1999. 38(3): p. 251-253.
25. D.B. Miracle, METALLIC GLASSES Fast track to production. Nature Materials, 2014. 13(5): p. 432-433.
26. J. Schroers, Processing of Bulk Metallic Glass. Advanced Materials, 2010. 22(14): p. 1566-1597.
27. 薛承輝, 金屬玻璃之發展與應用.. 台大校友雙月刊 2015.3. p. 8-11.
28. K. Buschow, Thermal stability of amorphous Zr‐Cu alloys. Journal of Applied Physics, 1981. 52(5): p. 3319-3323.
29. K.H.J. Buschow, Short-Range Order and Thermal-Stability in Amorphous-Alloys. Journal of Physics F-Metal Physics, 1984. 14(3): p. 593-607.
30. T. Zhang and A. Inoue, Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Materials Transactions Jim, 1999. 40(4): p. 301-306.
31. C.F. Li, J. Saida, M. Kiminami and A. Inoue, Dynamic crystallization process in a supercooled liquid region of Cu40Ti30Ni15Zr10Sn5 amorphous alloy. Journal of Non-Crystalline Solids, 2000. 261(1-3): p. 108-114.
32. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Thermal and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys. Materials Transactions, 2001. 42(6): p. 1149-1151.
33. A. Inoue, T. Zhang, K. Kurosaka and W. Zhang, High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti-Be system. Materials Transactions, 2001. 42(8): p. 1800-1804.
34. M. Calin, M. Eckert and L. Schultz, High-strength Cu-Ti-rich bulk metallic glasses and nano-composites. Zeitschrift Fur Metallkunde, 2003. 94(5): p. 615-620.
35. M.J. Santofimia, L. Zhao and J. Sietsma, Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels. Scripta Materialia, 2008. 59(2): p. 159-162.
36. L.Q. Xing and P. Ochin, Investigation of the effects of Al and Ti on the glass forming ability of Zr-Cu-Al and Zr-Ti-Al-Cu-Ni alloys through their solidification characteristics. Acta Materialia, 1997. 45(9): p. 3765-3774.
37. T.G. Park, S. Yi and D.H. Kim, Development of new Ni-based amorphous alloys containing no metalloid that have large undercooled liquid regions. Scripta Materialia, 2000. 43(2): p. 109-114.
38. Y. Yokoyama, T. Yamasaki, P. K. Liaw and A. Inoue, Relations between the thermal and mechanical properties of cast Zr-TM-Al (TM : Cu, Ni, or Co) bulk glassy alloys. Materials Transactions, 2007. 48(7): p. 1846-1849.
39. B.S. Murty, D. H. Ping, K. Hono and A. Inoue, APFIM and TEM study of the oxygen behavior during crystallization of Zr65Cu27.5Al7.5 metallic glass. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 304: p. 706-709.
40. A. Takeuchi, Y. Yokoyama, H. Kato, K. Yubuta and A. Inoue, Formation of Zr66.7Al11.1Ni22.2 noncrystalline alloys demonstrated by molecular dynamics simulations based on distorted plastic crystal model. Intermetallics, 2008. 16(6): p. 819-826.
41. W. Chen, Y. Wang, J. Qiang and C. Dong, Bulk metallic glasses in the Zr-Al-Ni-Cu system. Acta Materialia, 2003. 51(7): p. 1899-1907.
42. F.N. Rhines, Phase diagrams in metallurgy: their development and application. Metallurgy and metallurgical engineering series. 1956, New York,: McGraw-Hill. 340 p.
43. 蕭憲明, 金-銅-錫三元合金、銀-金-銅-錫四元合金系統相平衡及錫-銅合金與金基材的界面反應, 化學工程系. 2005, 國立臺灣科技大學: 台北市.
44. D.R. Askeland, The science and engineering of materials. 7th edition. ed. 2015, Mason, OH: Cengage Learning. pages cm.
45. S.A. Mey, Thermodynamic Reevaluation of the Cu - Ni System. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1992. 16(3): p. 255-260.
46. N. Wang, C. Li, Z. Du and F. Wang, Experimental study and thermodynamic re-assessment of the Ni-Zr system. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2007. 31(4): p. 413-421.
47. 蕭憲明, 以相圖計算(CALPHAD)方法預測銀-鋁-銅-鋯四元合金系統之金屬玻璃形成區域,, 材料科學與工程系. 2015, 國立臺灣科技大學: 台北市.
48. 陳皓, 鋯-鋁-銀非晶區域之判定與鋯-鋁-銀三元系統於500oC之相平衡, 工程技術研究所. 2010, 國立臺灣科技大學: 台北市.
49. 林麗娟, X 光繞射原理及其應用. X 光材料分析技術與應用專題, 1994.
50. Computational thermodynamics; the Calphad method. Sci-Tech News, 2008. 62(3): p. 68-69.
51. J. Van Laar, Melting or solidification curves in binary system. Z Phys Chem, 1908. 63: p. 216.
52. C. Wagner, Thermodynamics of alloys. Addison-Wesley metallurgy series,. 1952, Cambridge, Mass.,: Addison-Wesley Press. viii, 161 p.
53. L. Kaufman and H. Bernstein, Computer calculation of phase diagrams. With special reference to refractory metals. 1970.
54. R. Ferro and G. Cacciamani, Remarks on crystallochemical aspects in thermodynamic modeling. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2002. 26(3): p. 439-458.
55. Z.K. Liu, First-Principles Calculations and CALPHAD Modeling of Thermodynamics. Journal of Phase Equilibria and Diffusion, 2009. 30(5): p. 517-534.
56. M. Ghasemi, B. Sundman, SG. Fries and J J. ohansson, The thermodynamic assessment of the Au–In–Ga system. Journal of Alloys and Compounds, 2014. 600: p. 178-185.
57. R. Schmid-Fetzer, D. Andersson, P. Y. Chevalier, L. Eleno, O. Fabrichnaya, U. R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr and M. Zinkevich, Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2007. 31(1): p. 38-52.
58. A.T. Dinsdale, Sgte Data for Pure Elements. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1991. 15(4): p. 317-425.
59. A. Janz and R. Schmid-Fetzer, Impact of ternary parameters. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2005. 29(1): p. 37-39.
60. J. Leitner, P. Vonka, D. Sedmidubsky and P. Svoboda, Application of Neumann-Kopp rule for the estimation of heat capacity of mixed oxides. Thermochimica Acta, 2010. 497(1-2): p. 7-13.
61. http://encyclopedia2.thefreedictionary.com/Neumann-Kopp+rule.
62. J.L. Glimois, P. Forey, J. Feron and C. Becle, Structural Investigations of the Pseudo-Binary Compounds Ni10-Xcuxzr7. Journal of the Less-Common Metals, 1981. 78(1): p. 45-50.
63. K. Zeng, M. Hämäläinen and H. Lukas, A new thermodynamic description of the Cu-Zr system. Journal of phase equilibria, 1994. 15(6): p. 577-586.
64. C.H. Liu, W. R. Chiang, K. C. Hsieh and Y. A. Chang, Phase equilibrium in the Cu-Ni-Zr system at 800 degrees C. Intermetallics, 2006. 14(8-9): p. 1011-1013.
65. K.L. Lv, Z. Y. Xie, H. S. Liu, G. M. Cai and Z. P. Jin, Experimental investigation of phase equilibria in the Cu-Ni-Zr system. Journal of Materials Science, 2015. 50(22): p. 7238-7247.
66. H. King, Crystal Structures of the Elements at 25° C. Journal of Phase Equilibria, 1981. 2(3): p. 401-402.
67. J.L.C. Daams and P. Villars, Atomic environment classification of the tetragonal `intermetallic' structure types. Journal of Alloys and Compounds, 1997. 252(1–2): p. 110-142.
68. M. Handbook, Vol. 8. ASM, Metals Park, OH, 1973. 263.
69. J. Glimois, P. Forey and J. Feron, Structural Studies and Physics of Copper-Rich Alloys in the Cu--Zr System. J. Less-Common Met., 1985. 113(2): p. 213-224.
70. L. Bsenko, Crystallographic data for intermediate phases in the copper-zirconium and copper-hafnium systems. Journal of the Less Common Metals, 1975. 40(3): p. 365-366.
71. E. Carvalho and I. Harris, Constitutional and structural studies of the intermetallic phase, ZrCu. Journal of Materials Science, 1980. 15(5): p. 1224-1230.
72. M. Nevitt and J. Downey, Family of Intermediate phases having Si2Mo-type structure. 1962. p. 195-&.
73. J.M. Joubert, M. Latroche and A. Percheron-Guégan, Hydrogen absorption properties of several intermetallic compounds of the ZrNi system. Journal of Alloys and Compounds, 1995. 231(1): p. 494-497.
74. A.F. Albisetti, C.A. Biffi and A. Tuissi, Synthesis and structural analysis of Cu10Zr7. Journal of Alloys and Compounds, 2012. 544: p. 42-45.
75. T. Zhang, A. Inoue and T. Masumoto, Amorphous (Ti, Zr, Hf)-Ni-Cu Ternary Alloys with a Wide Supercooled Liquid Region. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1994. 181: p. 1423-1426.
76. C.J. Hu and P.Y. Lee, Formation of Cu–Zr–Ni amorphous powders with significant supercooled liquid region by mechanical alloying technique. Materials chemistry and physics, 2002. 74(1): p. 13-18.
77. H. Yang, J.Q. Wang and Y. Li, Glass formation in the ternary Zr-Zr2Cu-Zr2Ni system. Journal of Non-Crystalline Solids, 2006. 352(8): p. 832-836.
78. Y.Y. Cui, J. H. Li, Y. Dai and B. X. Liu, Prediction of Favored and Optimized Compositions for Cu-Zr-Ni Metallic Glasses by Interatomic Potential. Journal of Physical Chemistry B, 2011. 115(16): p. 4703-4708.
79. Basu, J., B.S. Murty, and S. Ranganathan, Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys. Journal of Alloys and Compounds, 2008. 465(1-2): p. 163-172.
80. Y. Dai, J. H. Li, X. L. Che amd B. X. Liu, Proposed Long-Range Empirical Potential To Study the Metallic Glasses in the Ni-Nb-Ta System. Journal of Physical Chemistry B, 2009. 113(20): p. 7282-7290.
81. D.H. Kang and I.H. Jung, Critical thermodynamic evaluation and optimization of the Ag-Zr, Cu-Zr and Ag-Cu-Zr systems and its applications to amorphous Cu-Zr-Ag alloys. Intermetallics, 2010. 18(5): p. 815-833.

QR CODE