簡易檢索 / 詳目顯示

研究生: 陳怡伶
Yi-Ling Chen
論文名稱: 金屬玻璃鍍層應用於植入性醫療器械先期研究: 具降低血細胞附著之特性評估
Application of Thin Film Metallic Glasses Coated on Implantable Medical Devices: Effects on Reductions of Blood Cell Adhesion
指導教授: 朱瑾
Jinn P. Chu
口試委員: 陳俊杉
Chuin-Shan (David) Chen
張世幸
Shih-Hsin Chang
陳明仁
Ming-Jen Chen
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 118
中文關鍵詞: 金屬玻璃接觸角疏水性血小板附著
外文關鍵詞: metallic glasses, contact angle, hydrophobic property, platelet adhesion
相關次數: 點閱:466下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植入性醫療器械,透過外科手術將醫療器械植入人體內,如整形外科、心血管支架、藥物遞送系統等。因需長時間置留在人體內,作為此器械之材料即面臨生物相容性是否良好、是否具有抗菌性和是否造成血管栓塞等問題。由於金屬玻璃其無序的原子排列結構,因此擁有許多獨特的性質,如高強度、抗腐蝕性、較佳的生物相容性及抗細菌沾黏等,於醫療應用上應有很大的潛力。
    本研究使用磁控濺鍍系統鍍製鋯基金屬玻璃薄膜(Zr53Cu33Al9Ta5)及純鈦薄膜於醫療級玻璃片上,探討表面粗糙度、血液接觸角與血小板附著之相互關係,並從血小板團聚情形推論血栓形成的機會。粗糙度量測結果,鍍有金屬玻璃之留置針及醫療級玻璃表面,粗糙度分別可降低 42%及27%。接觸角實驗結果,去離子水 (DI water) 於鍍有金屬玻璃薄膜表面接觸角度更高於90°(97.7°),證實鍍有金屬玻璃表面呈現疏水的特性。進一步以豬、兔子和人的全血液(whole blood)及血清(serum)進行接觸角量測,鍍有金屬玻璃薄膜的醫療級玻璃片,於不同生物體之全血液及血清的接觸角度皆比鍍有鈦金屬薄膜及未鍍的玻璃片接觸角度大,表示血細胞較不易黏附於其上。經蘭嶼黑豬及人類血小板附著實驗,以掃描式電子顯微鏡觀察,表面鍍有金屬玻璃薄膜的醫療級玻璃片,血小板附著所佔據SEM影像面積的百分比分別為0.34%及0.62%,與未鍍的醫療級玻璃片相比,血小板附著所占據SEM影像面積百分比明顯減少80%及89%。蘭嶼黑豬及人類血小板大小相對血小板數量作圖,於鍍有金屬玻璃之醫療級玻璃片,血小板最大團聚面積僅22 μm2及7 μm2,未鍍的醫療級玻璃片血小板團聚面積則大至190 μm2及680 μm2。依據上述實驗結果,表面鍍有金屬玻璃薄膜的醫療器械,血小板附著數量及團聚情形明顯減少,推論血栓形成機率及引發感染發炎情形可能降低,可延長醫療器械的壽命,提升器械的使用價值。


    Intravenous catheters are widely used in hospitals as the safe and essential pipelines to provide intravenous treatments, such as injections of medicine and nutritional supplements. Generally, the catheter is remained in a vein for some periods of time. It is easy to increase the opportunity of the phlebitis and sepsis due to the bacterial infection. Thin film metallic glass (TFMG) exhibits unique properties such as high strength, smooth surface as well as good wear- and corrosion-resistances due to its random-packing atomic structure. The biocompatibility and antibacterial property of TFMG can also be achieved, suggesting great potential for biomedical applications.
    In this study, Zr-based TFMG was deposited on catheter and medical-grade glasses by magnetron sputtering in order to decrease the chance for forming venous thrombosis. Surface roughness values of Ti-coated and bare glasses are similar, whereas the TFMG-coated one has relatively smooth surface. The Rq (root mean square) value of the bare glass is ~0.25 nm, which slightly decreases to 0.23 nm (a ~8% reduction) after coating with Ti and noticeably decreases to 0.19 nm (a ~27% reduction) after coating with TFMG. Based on the contact angle measurement results of various fluids on glass, the TFMG-coated glass exhibits more hydrophobic than that of bare one. The water contact angle of the bare sample surface is 60.1°, and this angle increases by ~63% after coating with TFMG (97.7°). There are less platelets aggregating on TFMG than on the bare glass in platelet adhesion test. According to experimental results, it is suggested that TFMG-coated catheters can be inserted into vessels for long periods of time with reduced numbers of the aggregation of blood platelets.

    摘要 I Abstract II Acknowledgement III Outline IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 1.1 Background of the study 1 1-2 Objectives of the study 2 Chapter 2 Literature review 3 2.1 Implantable medical devices 3 2.2 Issues in implantable medical devices 6 2.2.1 Bacterial infection 6 2.2.2 Thrombosis formation 8 2.3 Characteristic of platelet 10 2.4 Surface modifications in biomedical applications 12 2.4.1 Hard tissue replacements 16 2.4.2 Stents and guide wires 20 2.4.3 Intravascular catheters 23 2.5 Characteristic of metallic glasses (MGs) 25 2.5.1 Mechanical properties 27 2.5.2 Corrosion resistance 29 2.5.3 Smooth surface 31 2.6 MGs in biomedical applications 32 2.6.1 Antibacterial property 32 2.6.2 Biocompatibility and toxic effects 34 2.7 Sputtering [75] 38 Chapter 3 Experimental procedures 40 3.1 Substrate preparations 41 3.1.1 Peripheral venous catheter 41 3.1.2 Medical-grade glasses 42 3.2 Thin film deposition 43 3.2.1 TFMG deposition 43 3.2.2 Titanium deposition 46 3.3 Material characterization 47 3.3.1 Chemical composition analysis 47 3.3.2 Thermal analysis 49 3.3.3 Crystallographic analysis 50 3.3.4 Surface topography and surface roughness 51 3.4 Contact angle and surface free energy measurements 53 3.5 Platelet adhesion test 55 3.5.1 Blood sampling 55 3.5.2 Platelet rich plasma (PRP) preparation 57 3.5.3 PRP culture and platelets fixation 58 3.5.4 Critical point dry 59 3.5.5 Scanning electron microscopy (SEM) observation 59 Chapter 4 Results and Discussion 60 4.1 Chemical analysis 60 4.1.1 TFMG 60 4.1.2 Titanium film 60 4.2 Thermal analysis of TFMG 60 4.3 Crystallographic analysis 61 4.3.1 TFMG 61 4.3.2 Titanium film 62 4.4 Surface roughness analysis of different coatings 63 4.5 Contact angle and surface free energy measurements 69 4.5.1 Deionized water (DI water) 70 4.5.2 Phosphate-buffered saline (PBS) 70 4.5.3 Various bloods (Rabbit, pig and human) 72 4.5.4 Water contact angle measurement on different surfaces 78 4.5.5 Surface free energy measurements 79 4.6 Platelet adhesion experiment 82 4.6.1 Lanyu pig 83 4.6.2 Human 89 Chapter 5 Conclusions and Future Works 96 5.1 Conclusions 96 5.2 Future Works 97 References 98

    [1] Jinn P. Chu, Tz-Yah Liu, Chia-Lin Li, Chen-Hao Wang, Jason S. C. Jang, Ming-Jen Chen, Shih-Hsin Chang, Wen-Chien Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films, 561 (2014) 102-107.
    [2] Eveline Regar, Georgios Sianos, PW Serruys, Stent development and local drug delivery, British medical bulletin, 59 (2001) 227-248.
    [3] Wahid Khan, Eameema Muntimadugu, Michael Jaffe, Abraham J. Domb, Implantable Medical Devices, DOI 10.1007/978-1-4614-9434-8_2(2014) 33-59.
    [4] M. Salwiczek, Y. Qu, J. Gardiner, R. A. Strugnell, T. Lithgow, K. M. McLean, H. Thissen, Emerging rules for effective antimicrobial coatings, Trends in biotechnology, 32 (2014) 82-90.
    [5] Philip S. Stewart, J. William Costerton, Antibiotic resistance of bacteria in biofilms, The Lancet, 358 (2001) 135-138.
    [6] LOUISE PASSERINI, KAN LAM, J WILLIAM COSTERTON, E GARNER KING, Biofilms on indwelling vascular catheters, Critical care medicine, 20 (1992) 665-673.
    [7] JA Hyde, RO Darouiche, JW Costerton, Strategies for prophylaxis against prosthetic valve endocarditis: a review article, The Journal of heart valve disease, 7 (1998) 316-326.
    [8] AG Gristina, Y Shibata, G Giridhar, A Kreger, QN Myrvik, The glycocalyx, biofilm, microbes, and resistant infection, Seminars in arthroplasty, 1994, pp. 160-170.
    [9] A. Brill, T. A. Fuchs, A. S. Savchenko, G. M. Thomas, K. Martinod, S. F. De Meyer, A. A. Bhandari, D. D. Wagner, Neutrophil extracellular traps promote deep vein thrombosis in mice, Journal of thrombosis and haemostasis : JTH, 10 (2012) 136-144.
    [10] ERLING Falk, Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi, British heart journal, 50 (1983) 127-134.
    [11] Tobias A Fuchs, Alexander Brill, Daniel Duerschmied, Daphne Schatzberg, Marc Monestier, Daniel D Myers, Shirley K Wrobleski, Thomas W Wakefield, John H Hartwig, Denisa D Wagner, Extracellular DNA traps promote thrombosis, Proceedings of the National Academy of Sciences, 107 (2010) 15880-15885.
    [12] Evelyne Rey, Susan R. Kahn, Michèle David, Ian Shrier, Thrombophilic disorders and fetal loss: a meta-analysis, The Lancet, 361 (2003) 901-908.

    [13] A. W. Carpenter, M. H. Schoenfisch, Nitric oxide release: part II. Therapeutic applications, Chemical Society reviews, 41 (2012) 3742-3752.
    [14] Andrea Kristina Horst, CEA a thrombus CAM: CEACAM2, a twin of CEACAM1?, Blood, 124 (2014) 2323-2324.
    [15] R. Darbousset, G. M. Thomas, S. Mezouar, C. Frere, R. Bonier, N. Mackman, T. Renne, F. Dignat-George, C. Dubois, L. Panicot-Dubois, Tissue factor-positive neutrophils bind to injured endothelial wall and initiate thrombus formation, Blood, 120 (2012) 2133-2143.
    [16] D. Ribatti, E. Crivellato, Giulio Bizzozero and the discovery of platelets, Leukemia research, 31 (2007) 1339-1341.
    [17] M. L. von Bruhl, K. Stark, A. Steinhart, S. Chandraratne, I. Konrad, M. Lorenz, A. Khandoga, A. Tirniceriu, R. Coletti, M. Kollnberger, R. A. Byrne, I. Laitinen, A. Walch, A. Brill, S. Pfeiler, D. Manukyan, S. Braun, P. Lange, J. Riegger, J. Ware, A. Eckart, S. Haidari, M. Rudelius, C. Schulz, K. Echtler, V. Brinkmann, M. Schwaiger, K. T. Preissner, D. D. Wagner, N. Mackman, B. Engelmann, S. Massberg, Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo, The Journal of experimental medicine, 209 (2012) 819-835.
    [18] NT Mulvihill, JB Foley, Inflammation in acute coronary syndromes, Heart, 87 (2002) 201-204.
    [19] Bruce Furie, Barbara C Furie, Mechanisms of thrombus formation, New England Journal of Medicine, 359 (2008) 938-949.
    [20] S. Kamath, A. D. Blann, G. Y. Lip, Platelet activation: assessment and quantification, European heart journal, 22 (2001) 1561-1571.
    [21] K. R. Machlus, J. N. Thon, J. E. Italiano, Jr., Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation, British journal of haematology, 165 (2014) 227-236.
    [22] Tze-Man Ko, Jui-Che Lin, Stuart L Cooper, Surface characterization and platelet adhesion studies of plasma-carboxylated polyethylene, Journal of colloid and interface science, 156 (1993) 207-217.
    [23] B. Furie, B. C. Furie, Thrombus formation in vivo, The Journal of clinical investigation, 115 (2005) 3355-3362.
    [24] Jun Y Park, Cynthia H Gemmell, John E Davies, Platelet interactions with titanium: modulation of platelet activity by surface topography, Biomaterials, 22 (2001) 2671-2682.
    [25] Paul K Chu, JY Chen, LP Wang, N Huang, Plasma-surface modification of biomaterials, Materials Science and Engineering: R: Reports, 36 (2002) 143-206.

    [26] X. Liu, P. Chu, C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R: Reports, 47 (2004) 49-121.
    [27] P. Marchetti, R. Binazzi, V. Vaccari, M. Girolami, F. Morici, C. Impallomeni, M. Commessatti, L. Silvello, Long-term results with cementless Fitek (or Fitmore) cups, The Journal of arthroplasty, 20 (2005) 730-737.
    [28] RG Geesink, KLAAS de Groot, CP Klein, Bonding of bone to apatite-coated implants, Journal of Bone & Joint Surgery, British Volume, 70 (1988) 17-22.
    [29] Y. W. Song, D. Y. Shan, E. H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application, Materials Letters, 62 (2008) 3276-3279.
    [30] Tadashi Kokubo, Hyun-Min Kim, Masakazu Kawashita, Novel bioactive materials with different mechanical properties, Biomaterials, 24 (2003) 2161-2175.
    [31] Chikara Ohtsuki, Tadashi Kokubo, Takao Yamamuro, Mechanism of apatite formation on CaO SiO 2 P 2 O 5 glasses in a simulated body fluid, Journal of Non-Crystalline Solids, 143 (1992) 84-92.
    [32] Xiao-Xiang Wang, Satoshi Hayakawa, Kanji Tsuru, Akiyoshi Osaka, Bioactive titania gel layers formed by chemical treatment of Ti substrate with a H 2 O 2/HCl solution, Biomaterials, 23 (2002) 1353-1357.
    [33] L. Le Guehennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration, Dental materials : official publication of the Academy of Dental Materials, 23 (2007) 844-854.
    [34] JA McLaughlin, B Meenan, P Maguire, N Jamieson, Properties of diamond like carbon thin film coatings on stainless steel medical guidewires, Diamond and Related Materials, 5 (1996) 486-491.
    [35] MELVIN P JUDKINS, VINCENT C HINCK, CHARLES T DOTTER, Teflon-coated safety guides: an adjunct to the use of polyurethane catheters, American Journal of Roentgenology, 104 (1968) 223-224.
    [36] Heinrich G Klues, Ernst R Schwarz, Jürgen vom Dahl, Thorsten Reffelmann, Helmut Reul, K Potthast, C Schmitz, Jürgen Minartz, Winfried Krebs, Disturbed intracoronary hemodynamics in myocardial bridging early normalization by intracoronary stent placement, Circulation, 96 (1997) 2905-2913.
    [37] Ritwik Kumar Roy, Kwang‐Ryeol Lee, Biomedical applications of diamond‐like carbon coatings: A review, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83 (2007) 72-84.
    [38] J Gunn, D Cumberland, Stent coatings and local drug delivery. State of the art, European heart journal, 20 (1999) 1693-1700.

    [39] Eckhard Alt, Iris Haehnel, Christine Beilharz, Klaus Prietzel, Daniel Preter, Axel Stemberger, Thilo Fliedner, Wolf Erhardt, Albert Schömig, Inhibition of neointima formation after experimental coronary artery stenting a new biodegradable stent coating releasing hirudin and the prostacyclin analogue iloprost, Circulation, 101 (2000) 1453-1458.
    [40] Albert B Ferguson, Patrick G Laing, Edwin S Hodge, The ionization of metal implants in living tissues, The Journal of Bone & Joint Surgery, 42 (1960) 77-90.
    [41] K Gutensohn, C Beythien, J Bau, T Fenner, P Grewe, R Koester, K Padmanaban, P Kuehnl, In vitro analyses of diamond-like carbon coated stents: reduction of metal ion release, platelet activation, and thrombogenicity, Thrombosis research, 99 (2000) 577-585.
    [42] A. L. Bartorelli, D. Trabattoni, P. Montorsi, F. Fabbiocchi, S. Galli, P. Ravagnani, L. Grancini, S. Cozzi, A. Loaldi, Aspirin alone antiplatelet regimen after intracoronary placement of the Carbostent: the ANTARES study, Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions, 55 (2002) 150-156.
    [43] Naomi P O'Grady, Mary Alexander, E Patchen Dellinger, Julie L Gerberding, Stephen O Heard, Dennis G Maki, Henry Masur, Rita D McCormick, Leonard A Mermel, Michele L Pearson, Guidelines for the prevention of intravascular catheter–related infections, Clinical infectious diseases, 35 (2002) 1281-1307.
    [44] M. G. Bourassa, M. Cantin, E. B. Sandborn, E. Pederson, Scanning electron microscopy of surface irregularities and thrombogenesis of polyurethane and polyethylene coronary catheters, Circulation, 53 (1976) 992-996.
    [45] P. Tenke, C. R. Riedl, G. L. Jones, G. J. Williams, D. Stickler, E. Nagy, Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy, International journal of antimicrobial agents, 23 Suppl 1 (2004) S67-74.
    [46] Brian Krafte-Jacobs, Carlos J Sivit, Rodrigo Mejia, Murray M Pollack, Catheter-related thrombosis in critically ill children: comparison of catheters with and without heparin bonding, The Journal of pediatrics, 126 (1995) 50-54.
    [47] FE Luborsky, Amorphous metallic alloys, Butterworth and Co (Publishers): London, UK1983.
    [48] Akihisa Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta materialia, 48 (2000) 279-306.
    [49] D. B. Miracle, A structural model for metallic glasses, Nature materials, 3 (2004) 697-702.
    [50] W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2004) 45-89.

    [51] J. Eckert, A. Kübler, L. Schultz, Mechanically alloyed Zr[sub 55]Al[sub 10]Cu[sub 30]Ni[sub 5] metallic glass composites containing nanocrystalline W particles, Journal of Applied Physics, 85 (1999) 7112.
    [52] William L Johnson, Bulk glass-forming metallic alloys: Science and technology, MRS bulletin, 24 (1999) 42-56.
    [53] Akihisa Inoue, High strength bulk amorphous alloys with low critical cooling rates (overview), Materials Transactions, JIM, 36 (1995) 866-875.
    [54] M. Ashby, A. Greer, Metallic glasses as structural materials, Scripta Materialia, 54 (2006) 321-326.
    [55] William L Johnson, Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials, Progress in Materials Science, 30 (1986) 81-134.
    [56] Pao-Sheng Chen, Hsien-Wei Chen, Jenq-Gong Duh, Jyh-Wei Lee, Jason Shian-Ching Jang, Characterization of mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses, Surface and Coatings Technology, 231 (2013) 332-336.
    [57] Ching-Yen Chuang, Jyh-Wei Lee, Chia-Lin Li, Jinn P. Chu, Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass, Surface and Coatings Technology, 215 (2013) 312-321.
    [58] N. Kaushik, P. Sharma, S. Ahadian, A. Khademhosseini, M. Takahashi, A. Makino, S. Tanaka, M. Esashi, Metallic glass thin films for potential biomedical applications, Journal of biomedical materials research. Part B, Applied biomaterials, 102 (2014) 1544-1552.
    [59] Yongdong Liu, Seiichi Hata, Kouichi Wada, Akira Shimokohbe, Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass, Japanese Journal of Applied Physics, 40 (2001) 5382.
    [60] Jinn P. Chu, J. S. C. Jang, J. C. Huang, H. S. Chou, Y. Yang, J. C. Ye, Y. C. Wang, J. W. Lee, F. X. Liu, P. K. Liaw, Y. C. Chen, C. M. Lee, C. L. Li, Cut Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films, 520 (2012) 5097-5122.
    [61] U Sudarsan, N Chandran, K Chattopadhyay, On the wear mechanism of iron and nickel based transition metal-metalloid metallic glasses, Acta Metallurgica, 35 (1987) 1463-1473.
    [62] J. P. Chu, C. M. Lee, R. T. Huang, P. K. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surface and Coatings Technology, 205 (2011) 4030-4034.
    [63] J. C. Huang, J. P. Chu, J. S. C. Jang, Recent progress in metallic glasses in Taiwan, Intermetallics, 17 (2009) 973-987.

    [64] K. Asami, S. J. Pang, T. Zhang, A. Inoue, Preparation and Corrosion Resistance of Fe-Cr-Mo-C-B-P Bulk Glassy Alloys, Journal of The Electrochemical Society, 149 (2002) B366.
    [65] SJ Pang, T Zhang, K Asami, A Inoue, Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance, Acta Materialia, 50 (2002) 489-497.
    [66] M Janik‐Czachor, H Viefhaus, Passivity of Fe‐Ni Base Metal‐Metalloid Glasses, Journal of The Electrochemical Society, 136 (1989) 2481-2485.
    [67] Y. B. Wang, H. F. Li, Y. F. Zheng, M. Li, Corrosion performances in simulated body fluids and cytotoxicity evaluation of Fe-based bulk metallic glasses, Materials Science and Engineering: C, 32 (2012) 599-606.
    [68] C. H. Huang, J. J. Lai, T. Y. Wei, Y. H. Chen, X. Wang, S. Y. Kuan, J. C. Huang, Improvement of bio-corrosion resistance for Ti42Zr40Si15Ta3 metallic glasses in simulated body fluid by annealing within supercooled liquid region, Materials science & engineering. C, Materials for biological applications, 52 (2015) 144-150.
    [69] C. W. Chu, Jason S. C. Jang, G. J. Chen, S. M. Chiu, Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process, Surface and Coatings Technology, 202 (2008) 5564-5566.
    [70] P. H. Tsai, Y. Z. Lin, J. B. Li, S. R. Jian, J. S. C. Jang, C. Li, J. P. Chu, J. C. Huang, Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating, Intermetallics, 31 (2012) 127-131.
    [71] T. Yuranova, A. G. Rincon, A. Bozzi, S. Parra, C. Pulgarin, P. Albers, J. Kiwi, Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver, Journal of Photochemistry and Photobiology A: Chemistry, 161 (2003) 27-34.
    [72] Z. G. Dan, H. W. Ni, B. F. Xu, J. Xiong, P. Y. Xiong, Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions, Thin Solid Films, 492 (2005) 93-100.
    [73] <110-Mechanisms of Thrombus Formation.pdf>, DOI.
    [74] B. Zberg, P. J. Uggowitzer, J. F. Loffler, MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature materials, 8 (2009) 887-891.
    [75] Donald M Mattox, Handbook of physical vapor deposition (PVD) processing, William Andrew2010.
    [76] Brett Levine, Craig J Della Valle, Joshua J Jacobs, Applications of porous tantalum in total hip arthroplasty, Journal of the American Academy of Orthopaedic Surgeons, 14 (2006) 646-655.

    [77] J. Gottlow, M. Dard, F. Kjellson, M. Obrecht, L. Sennerby, Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig, Clinical implant dentistry and related research, 14 (2012) 538-545.
    [78] Glen McHale, NJ Shirtcliffe, MI Newton, Contact-angle hysteresis on super-hydrophobic surfaces, Langmuir, 20 (2004) 10146-10149.
    [79] Daniel K Owens, RC Wendt, Estimation of the surface free energy of polymers, Journal of applied polymer science, 13 (1969) 1741-1747.
    [80] C. Y. Wu, Y. N. Jiang, H. P. Chu, S. H. Li, Y. Wang, Y. H. Li, Y. Chang, Y. T. Ju, The type I Lanyu pig has a maternal genetic lineage distinct from Asian and European pigs, Animal genetics, 38 (2007) 499-505.
    [81] A. Krishnan, Y. H. Liu, P. Cha, R. Woodward, D. Allara, E. A. Vogler, Group Hematology at Biomaterial Interfaces Research, An evaluation of methods for contact angle measurement, Colloids and surfaces. B, Biointerfaces, 43 (2005) 95-98.
    [82] DY Kwok, AW Neumann, Contact angle measurement and contact angle interpretation, Advances in colloid and interface science, 81 (1999) 167-249.
    [83] B. Grossner-Schreiber, J. Teichmann, M. Hannig, C. Dorfer, D. F. Wenderoth, S. J. Ott, Modified implant surfaces show different biofilm compositions under in vivo conditions, Clinical oral implants research, 20 (2009) 817-826.
    [84] R. E. Baier, Surface behaviour of biomaterials: the theta surface for biocompatibility, Journal of materials science. Materials in medicine, 17 (2006) 1057-1062.
    [85] Ahmed Elkhyat, Carol Courderot‐Masuyer, Tijani Gharbi, Philippe Humbert, Influence of the hydrophobic and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo human skin friction comparison, Skin Research and Technology, 10 (2004) 215-221.
    [86] WIESŁAWA Okrój, MAGDALENA Walkowiak-Przybyło, K Rośniak-Bak, Leszek Klimek, Bogdan Walkowiak, Comparison of microscopic methods for evaluating platelet adhesion to biomaterial surfaces, Acta Bioeng Biomech, 11 (2009) 45-49.
    [87] Mitsuhiro Kuwahara, Mitsuhiko Sugimoto, Shizuko Tsuji, Hideto Matsui, Tomohiro Mizuno, Shigeki Miyata, Akira Yoshioka, Platelet shape changes and adhesion under high shear flow, Arteriosclerosis, thrombosis, and vascular biology, 22 (2002) 329-334.

    無法下載圖示 全文公開日期 2020/07/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE