簡易檢索 / 詳目顯示

研究生: 陳怡伶
Yi-ling Chen
論文名稱: 氮摻雜石墨烯之製備及其電晶體之應用
Nitrogen-Doped Graphene and Its Application on Field Effect Transistor
指導教授: 李奎毅
Kuei-yi Lee
口試委員: 黃鶯聲
Ying-sheng Huang
趙良君
Liang-chiun Chao
何清華
Ching-hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 石墨烯氮摻雜電晶體通道
外文關鍵詞: graphene, nitrogen doping, field effect transistor channel
相關次數: 點閱:279下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯為一新興二維碳材料,擁有較矽良好之導電性質,而室溫下具備高電子遷移率,使其多應用於場效電晶體之製作。以電子做為傳輸之N型電晶體的效能較P型佳,因此本實驗以N型材料為電晶體的通道。由於空氣中的水氣及氧原子吸附,造成石墨烯多為P型,在此以氮氣電漿摻雜和通入氨氣於化學氣相沉積系統 (CVD),利用與碳原子相近之大小,且有五個價電子之氮摻入石墨烯表面,進而改變石墨烯結構和電性。氮氣電漿在石墨烯表面造成缺陷,隨處理時間增加,氧和缺陷鍵結使碳成分減少,電晶體量測結果顯示石墨烯通道為P型,電子遷移率也隨處理時間增長而下降。藉由不同偏壓,氨氣在CVD成長石墨烯之摻雜效果亦不同。加正偏壓時,Dirac point從+15 V向左位移至+5 V;加負偏壓時,Dirac point更移動至-10 V,證明此石墨烯經由摻雜後轉變為N型材料,其中碳氮鍵結的pyridinic和quaternary型態,是造成N型摻雜的主要原因。比較兩種氮摻雜方式,氮電漿處理雖較直接,但電漿造成之缺陷會與空氣中的氧結合,而直接在石墨烯成長時通入氨氣,能使碳氮鍵結機會增加,使石墨烯轉為N型。


    Graphene, a two-dimensional material with hexagonal arrangement in carbon atoms, has promising characteristics such as good conductivity and high carrier mobility in room temperature that has widely applied in fabrication of field effect transistor (FET). To enhance the transport properties of FET, n-type material is used as conductive channel due to its majority carriers, electrons. However, the synthesized graphene is usually p-type because of adsorption of oxygen in air. For FET applications, pristine graphene is doped with nitrogen atoms which have similar atomic size with carbon and five valence electrons. There are two doping method used in the thesis: nitrogen plasma treatment and direct synthesis of chemical vapor deposition (CVD) with ammonia (NH3) introduction. Prolonged nitrogen plasma treatment creates disorder in graphene structure and oxygen-containing groups react with defects, causing reduction in carbon content and increase in oxygen content. The transfer characteristic of nitrogen-doped graphene by plasma treatment shows p-type behavior as the mobility decreases with treatment time. Synthesis of nitrogen-doped graphene by CVD technique with NH3 introduction has different doping effect with applied bias, ±10 V. The Dirac point shifts from +15 V to +5 V after applying bias, +10 V. Furthermore, the Dirac point shifts to -10 V under bias -10 V, which indicates the n-type behavior. In addition, the pyridinic and quaternary N of C-N bond is dominant for effective doping in this method. Although the plasma treatment is a simple way to introduce heteratoms, CVD technique is a direct synthesis in doping atoms during growth. Defects created by plasma treatment would coordinate with oxygen while direct doping would increase the possibility in bonding with carbon and nitrogen atoms which leads to effective nitrogen doping.

    Abstract (in Chinese) ------------------------------------------------------I Abstract (in English) ------------------------------------------------------II Acknowledgment -------------------------------------------------------------III Contents -------------------------------------------------------------------IV Figure Captions ------------------------------------------------------------VI Table List -----------------------------------------------------------------X Chapter 1 Introduction -----------------------------------------------------1 1.1 Graphene ------------------------------------------------------------1 1.1.1 History ---------------------------------------------------------1 1.1.2 Crystal Structure -----------------------------------------------2 1.1.3 Band Structure --------------------------------------------------4 1.1.4 Phonon Dispersion -----------------------------------------------6 1.1.5 Raman Spectroscopy ----------------------------------------------6 1.1.6 Synthesis -------------------------------------------------------8 1.2 Field Effect Transistor ---------------------------------------------10 1.2.1 Background ------------------------------------------------------10 1.2.2 Operation -------------------------------------------------------11 1.2.3 Graphene-Based FET ----------------------------------------------12 1.3 Motivation ----------------------------------------------------------14 1.3.1 Substitutional Doping -------------------------------------------14 1.3.2 Top-Gate FET Structure ------------------------------------------16 Chapter 2 Experimental Methodology -----------------------------------------17 2.1 Experimental Procedure ----------------------------------------------17 2.2 Experimental Apparatus ----------------------------------------------18 2.2.1 Substrate Preparation -------------------------------------------18 2.2.2 Synthesis of Pristine Graphene ----------------------------------18 2.2.3 Synthesis of Nitrogen-Doped Graphene ----------------------------21 2.2.4 Graphene Transfer -----------------------------------------------23 2.2.5 Nitrogen Doping by Plasma Treatment -----------------------------23 2.2.6 Photolithography ------------------------------------------------25 2.2.7 E-beam Evaporation ----------------------------------------------27 2.3 Analysis and Characterization ---------------------------------------28 2.3.1 High-Resolution Transmission Electron Microscopy (HRTEM)---------28 2.3.2 Raman Spectroscopy ----------------------------------------------28 2.3.3 X-ray Photoelectron Spectroscopy (XPS) --------------------------29 2.3.4 Transfer Characteristics Measurement ----------------------------29 Chapter 3 Results and Discussion -------------------------------------------30 3.1 Pristine Graphene ---------------------------------------------------30 3.2 Nitrogen-Doped Graphene ---------------------------------------------32 3.2.1 Nitrogen Plasma Treatment ---------------------------------------32 3.2.2 Thermal CVD with NH3 Introduction -------------------------------40 3.3 FET Measurement -----------------------------------------------------47 3.3.1 Pristine Graphene -----------------------------------------------47 3.3.2 Nitrogen-Doped Graphene by Plasma Treatment ---------------------48 3.3.3 Nitrogen-Doped Graphene by Thermal CVD with NH3 Introduction ----50 Chapter 4 Conclusions ------------------------------------------------------52 Reference ------------------------------------------------------------------53 Publication List -----------------------------------------------------------60

    [1] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: Buckminsterfullerene,” Nature, vol. 318, pp. 162-163, 1985.
    [2] R. E. Peierls, “Quelques proprietes typiques des corpses solides,” Ann. I. H. Poincare, vol. 5, pp. 177-222, 1935.
    [3] L. D. Landau, “Zur Theorie der phasenumwandlungen II,” Phys. Z. Sowjetunion, vol. 11, pp. 26-35, 1937.
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
    [5] K. S. Novoelov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” Proc. Natl Acad. Sci. USA, vol. 102, pp. 10451-10453, 2005.
    [6] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, pp. 183-191, 2007.
    [7] M. S. Dresselhaus and P. T. Araujo, “Perspectives on the 2010 Nobel Prize in physics for graphene,” ACS Nano, vol. 4, pp. 6297-6302, 2010.
    [8] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, “Giant intrinsic carrier mobilities in graphene and its bilayer,” Phys. Rev. Lett., vol. 100, pp. 016602-1-016602-4, 2008.
    [9] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, pp. 351-355, 2008.
    [10] K. S. Novoselov, E. McCann, S. V. Morosov, V. I. Falko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim, “Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene,” Nature, vol. 2, pp. 177-180, 2006.
    [11] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett., vol. 9, pp. 4359-4363, 2009.
    [12] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, pp. 109-162, 2009.
    [13] J. Hass, W. A. de Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” J. Phys. Cond. Matter, vol. 20, pp. 323202-323228, 2008.
    [14] J. C. Charlier, J. P. Michenaud, and X. Gonze, “First-principles study of the electronic properties of simple hexagonal graphite,” Phys. Rev. B, vol. 46, pp. 4531-4540, 1992.
    [15] J. D. Bernal, “The structure of graphite,” Proc. R. Soc. Lond. A, vol. 106, pp. 749-773, 1924.
    [16] J. H. Warner, M. Mukai, and A. I. Kirkland, “Atomic structure of ABC rhombohedral stacked trilayer graphene,” ACS Nano, vol. 6, pp. 5680-5686, 2012.
    [17] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71 pp. 622-634, 1947.
    [18] P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett., vol. 10, pp. 4285-4294, 2010.
    [19] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photon., vol. 4, pp. 611-622, 2010.
    [20] R. Saito, A. Jorio, A. G. Souza-Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, “Probing phonon dispersion relations of graphite by double resonance Raman scattering,” Phys. Rev. Lett., vol. 88, pp. 027401-1-027401-4, 2002.
    [21] L. M. Malard, M. A. Pimenta, G. Dresslhaus, and M. S. Dresslhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, pp. 51-87, 2009.
    [22] M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, and C. Thomsen, “Phonon dispersion of graphite by inelastic x-ray scattering,” Phys. Rev. B, vol. 76, pp. 035439-1-035439-7, 2007.
    [23] S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philos. Trans. R. Soc. Lond. A, vol. 362, pp. 2271-2288, 2004.
    [24] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, “ Perspectives on carbon nanotubes and graphene Raman spectroscopy,” Nano Lett., vol. 10, pp. 751-758, 2010.
    [25] C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, pp. 2127-2150, 2010.
    [26] Z. Sun, D. K. James, and J. M. Tour, “Graphene chemistry: synthesis and manipulation,” J. Phys. Chem. Lett., vol. 2, pp. 2425-2432, 2011.
    [27] C. Mattevi, H. Kim, and M. Chhowalla, “A review of chemical vapor deposition of graphene on copper,” J. Mat. Chem., vol. 21, pp. 3324-3334, 2011.
    [28] A. N. Obraztsov, “Making graphene on a large scale,” Nat. Nanotechnol., vol. 4, pp. 212-213, 2009.
    [29] V. E. Bottom, “Invention of the solidstate amplifier,” Physics Today, vol. 17, pp. 24-26, 1964.
    [30] O. Heil, “Improvements in or relating to electrical amplifiers and other control arrangements and devices,” British Patent 439 457, 1935.
    [31] N. Arora, MOSFET Modeling for VLSI Simulation, World Scientific, 2007, p. 122.
    [32] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol., vol. 3, pp. 487-496, 2010.
    [33] M. Burghard, H. Klauk, and K. Kern, “Carbon-based field-effect transistors for nanoelectronics,” Adv. Mater., vol. 21, pp. 2586-2600, 2009.
    [34] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices,” Nature Mater., vol. 7, pp. 151-157, 2008.
    [35] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, “Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties,” Nano Lett., vol. 9, pp. 1752-1758, 2009.
    [36] D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye, and S. Knights, “Nitrogen doping effects on the structure of graphene,” Appl. Surf. Sci., vol. 257, pp. 9193-9198, 2011.
    [37] Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, “Nitrogen-doped graphene and its application in electrochemical biosensing,” ACS Nano, vol. 4, pp. 1790-1798, 2010.
    [38] H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, and J. W. Choi, “Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes,” Nano Lett., vol. 11, pp. 2472-2477, 2011.
    [39] J. Robertson and C. A. Davis, “Nitrogen doping of tetrahedral amorphous carbon,” Diam. Relat. Mater., vol. 4, pp. 441-444, 1995.
    [40] C. L. Muhich, J. Y. Westcott, T. C. Morris, A. W. Weimer, and C. B. Musgrave, “The effect of N and B doping on graphene and the adsorption and migration behavior of Pt atoms,” J. Phys. Chem. C, vol. 117, pp. 10523-10535, 2013.
    [41] T. Schiros, D. Nordlund, L. Plov, D. Prezzi, L. Zhao, K. S. Kim, U. Wurstbauer, C. Gutirrez, D. Delongchamp, C. Jaye, D. Fischer, H. Ogasawara, L. G. M. Pettersson, D. R. Reichman, P. Kim, M. S. Hybertsen, and A. N. Pasupathy, “Connecting dopant bond type with electronic structure in N-doped graphene,” Nano Lett., vol. 12, pp. 4025-4031, 2012.
    [42] S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. Mariotto, “Nitrogen modification of hydrogenated amorphous carbon films,” J. Appl. Phys., vol. 81, pp. 2626-2634, 1997.
    [43] R. John, A. Ashokreddy, C. Vijayan, and T. Pradeep, “Single- and few-layer graphene growth on stainless steel substrates by direct thermal chemical vapor deposition,” Nanotechnology, vol. 22, pp. 165701-1-165701-7, 2011.
    [44] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, vol. 446, pp. 60-63, 2007.
    [45] Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay, and Y. Lin, “Nitrogen-doped graphene and its electrochemical applications,” J. Mat. Chem., vol. 20, pp. 7491-7496, 2010.
    [46] H. Gao, L. Song, W. Guo, L. Huang, D. Yang, F. Wang, Y. Zuo, X. Fan, Z. Liu, W. Gao, R. Vajtai, K. Hackenberg, and P. M. Ajayan, “A simple method to synthesize continuous large area nitrogen-doped graphene,” Carbon, vol. 50, pp. 4476-4482, 2012.
    [47] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143, pp.47-57, 2007.
    [48] S. Ryu, L. Liu, S. Berciaud, Y. J. Yu, H. Liu, P. Kim, G. W. Flynn, and L. E. Brus, “Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate,” Nano Lett., vol. 10, pp. 4944-4951, 2010.
    [49] H. Wang, T. Maiyalagan, and X. Wang, “Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications,” ACS Catal., vol. 2, pp. 781-794, 2012.
    [50] W. Shen and W. Fan, “Nitrogen-containing porous carbons: synthesis and application,” J. Mater. Chem. A, vol. 1, pp. 999-1013, 2013.
    [51] D. F. Davidson, K. K. Hőinghaus, A. Y. Chang, and R. K. Hanson, “A pyrolysis mechanism for ammonia,” Int. J. Chem. Kinet., vol. 22, pp. 513-535, 1990.
    [52] Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, “Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets,” ACS Nano, vol. 5, pp. 4112-4117, 2011.
    [53] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, and J. R. Gong, “Controllable N-doping of graphene,” Nano Lett., vol. 10, pp. 4975-4980, 2010.
    [54] S. Some, J. Kim, K. Lee, A. Kulkarni, Y. Yoon, S. Lee, T. Kim, and H. Lee, “Highly air-stable phosphorus-doped N-type graphene field-effet transistors,” Adv. Mater., vol. 24, pp. 5481-5486, 2012.
    [55] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett., vol. 9, pp. 30-35, 2009.
    [56] C. D. Wang, M. F. Yuen, T. W. Ng, S. K. Jha, Z. Z. Lu, S. Y. Kwok, T. L. Wong, X. Yang, C. S. Lee, S. T. Lee, and W. J. Zhang, “Plasma-assisted growth and nitrogen doping of graphene films,” Appl. Phys. Lett., vol. 100, pp. 253107-1-253107-5, 2012.
    [57] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science, vol. 324, pp. 768-771, 2009.

    無法下載圖示 全文公開日期 2018/06/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE