簡易檢索 / 詳目顯示

研究生: 陳祈仰
Chi-Yang Chen
論文名稱: 二硒化鎢層狀半導體電傳輸特性與過渡金屬硫屬化合物析氫與析氧反應研究
Electronic transport in WSe2 Layered Semiconductors and Hydrogen and Oxygen Evolution Reaction in Transition Metal Dichalcogenides
指導教授: 趙良君
Liang-Chiun Chao 
陳瑞山
Cheng-Maw Chen
口試委員: 趙良君
Liang-Chiun Chao 
陳瑞山
Cheng-Maw Chen
李奎毅
Kuei-Yi Lee
林麗瓊
Li-Chyong Chen
鄭澄懋
Cheng-Maw Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 二硒化鎢層狀半導體電傳輸特性過渡金屬硫屬化合物析氫反應析氧反應
外文關鍵詞: WSe2, Layered Semiconductor, Electronic transport, Transition Metal Dichalcogenide, Hydrogen Evolution Reaction, Oxygen Evolution Reaction
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 中文摘要......................................................................................................I Abstract.......................................................................................................II 致謝...........................................................................................................III 目錄...........................................................................................................IV 圖目錄 .....................................................................................................VI 表目錄 .....................................................................................................IX 第一章 緒論...........................................................................................1 1.1二硒化鎢層狀半導體電傳輸特性研究背景.......................................1 1.1.1 層狀晶體之二維奈米材料.......................................................2 1.1.2 過渡金屬硫屬化合物...............................................................4 1.1.3 過度金屬硫屬化合物表面載子聚集.......................................7 1.2過渡金屬硫屬化合物析氫與析氧反應研究背景...............................9 1.2.1 氫能源發展...............................................................................9 1.2.2 產氫與產氧技術.......................................................................8 1.2.3 燃料電池..................................................................................10 第二章 樣品介紹......................................................................................12 2.1 晶體成長.............................................................................................12 2.2 二硒化鎢晶體結構與基本特性 ......................................................14 2.3 二硫化鉬、二硒化鉬與二硫化鎢晶體結構與基本特性................17 第三章 實驗方法.....................................................................................19 3.1二硒化鎢層狀晶體檢測.....................................................................19 3.1.1 拉曼光譜儀 (Raman Spectrometer)……………...................19 3.1.2 X光繞射術(X-ray Diffraction, XRD) ....................................22 3.1.3 雙束型聚焦離子束系統 (Dual-Beam Focused Ion Beam, DB-FIB) ...............................................................................26 3.1.4原子力顯微術 (Atomic Force Microscopy, AFM)................29 3.1.4角度解析光電子能譜(Angle-resolved Photoemission Spectroscopy, ARPES) .........................................................32 3.2 二硫化鉬層狀半導體元件製作........................................................35 3.2.1 基板製作.................................................................................35 3.2.2 二維層狀奈米薄片(nanosheets) ............................................36 3.2.3電子蒸鍍機(e-beam)氧化保護層蒸鍍....................................38 3.2.4 奈米元件製作.........................................................................39 3.3 元件之暗電導量測...........................................................................43 3.3.1 電流對電壓量測(current-voltage measurement, I-V measurement) ................................................................43 3.3.2 溫度變化之電性量測 (temperature-dependent measurement) ...................................45 3.3.3金氧半場效應電晶體量測(Metal-Oxide-Semiconductor Field Effect Transistor measurement, MOSFET measurement)………………………....................................47 3.4過渡金屬硫屬化合物析氫與析氧反應樣品製備與量測.......49 3.4.1 電化學量測樣品製備.............................................................49 3.4.2 氮電漿參雜樣品製備.............................................................50 3.5電化學反應與量測............................................................................53 3.5.1 電解水反應............................................................................53 3.5.2 析氫反應................................................................................54 3.5.3 析氧反應................................................................................56 3.5.4 三極式電化學分析系統........................................................58 3.5.5 HER線性掃描伏安法(Linear Sweep Voltammetry, LSV)量測.............................................................................60 3.5.6 OER線性掃描伏安法(Linear Sweep Voltammetry, LSV)量測.............................................................................62 3.5.7參考電極(Reference electrode)之間的電極轉換………......64 第四章 結果與討論................................................................................66 4.1二硒化鎢層狀半導體電傳輸特性....................................................66 4.1.1晶體形貌與結構分析...............................................................66 4.1.2 WSe2狀半導體元件................................................................70 4.1.3 WSe2奈米結構暗電導............................................................72 4.1.4 電導率厚度相依特性..............................................................77 4.1.5 變溫電導率與活化能量測......................................................80 4.1.6 金氧半場效應電晶體量測......................................................83 4.1.7 由ARPES證實表面電子聚集................................................87 4.1.8 WSe2奈米結構本質電導率量測..............................................91 4.2 TMD層狀單晶析氫與析氧反應........................................................94 4.2.1 MoS2表面電子聚集效應之析氫反應效率探討.....................94 4.2.2 MoSe2表面電子聚集效應之析氫反應效率探討..................100 4.2.3 表面熱處理於MoSe2析氫反應效率探討...........................103 4.2.4 氮電漿轟擊MoSe2表面之析氫反應...................................105 4.2.5 MoSe2與MoS2表面電子聚集效應之析氫反應比較……..108 4.2.6 MoSe2析氫反應比較............................................................109 4.2.7 WS2表面電動聚集效應之析氧反應.....................................112 4.2.8 表面熱處理於WS2析氫反應...............................................115 4.2.9 氮電漿轟擊MoSe2表面之析氫反應...................................116 第五章 結論...........................................................................................118 參考文獻.................................................................................................119

參考文獻
[1] M. M. Waldrop, The chips are down for Moore’s law. Nature News, 530(7589), 144., 2016.
[2] C. Wagner, N. Harned, Lithography gets extreme, Nature Photonics, 4(1), 24-26, 2010.
[3] W. M. Moreau, Semiconductor lithography: principles, practices, and materials. Springer Science & Business Media, 2012.
[4] Y. H. Cheng, C. W. Tsai, W. H. Hsieh, C. T. Wu, Y. L. Tu, U.S., Patent Application No. 13/871, 465, 2014.
[5] N. A. Kim, W. Austin, D. Baauw, T. Mudge, K. Flautner, J. Hu, V. Narayanan, Leakage current: Moore's law meets static power. computer, 36(12), 68-75, 2003.
[6] M. Y. Li, S. K. Su, H. S. P. Wong, L. J. Li, How 2D semiconductors could extend Moore’s law, 2019.
[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, Vol. 306, pp.666-669, 2004.
[8] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth,V. V. Khotkevich, S. V. Morozov, Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, pp. 10451-10453, 2005.
[9] X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, H. Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics, Applied Physics Reviews, 4(2), 021306, 2017.
[10] A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem., vol. 100, pp. 13226, 1996.
[11] A. P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals, J. Phys. Chem., vol. 100, pp. 13226,(1996).
[12] X. Wang, L. J. Zhi, K. Mullen, Nano Lett. 8, 323, 2008.
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, Vol. 306, pp.666-669, 2004.
[14] D. Li, R. B. Kaner, Graphene-based materials. Science, 320(5880), 1170-1171, 2018.
[15] K. Khan, A. K. Tareen, M. Aslam, Y. Zhang,R. Wang, Z. Ouyang, H. Zhang, Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale, 11(45), 21622-21678, 2019.
[16] K. J. Tielrooij, N. C. H. Hesp, A. Principi, M. B. Lundeberg, E. A. A. Pogna, L. Banszerus, Z. Mics, M. Massicotte, P. Schmidt, D. Davydovskaya, D. G. Purdie, I. Goykhman, G. Soavi, A. Lombardo, K. Watanabe, T. Taniguchi, M. Bonn, D. Turchinovich, C. Stampfer, A. C. Ferrari, G. Cerullo, M. Polini, F. H. L. Koppens, Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling. Nature Nanotechnology, 13, 41–46, 2018.
[17] W. S. Yun, W. S. Han, S. C. Hong, I. G. Kim, J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors”, Phys. Rev. B, Vol. 85, 2012.
[18] D. H. Lien, M. Amani, S. B. Desai, G. H. Ahn, K. Han, J. H. He, J. W. Ager III, M. C. Wu , A. Javey, Large-area and bright pulsed electroluminescence in monolayer semiconductors. Nature Communications, 9, 1229, 2018.
[19] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol., Vol. 6, pp. 147-150, 2011.
[20] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor”, Phys. Rev. Lett., Vol. 105, pp.136805, 2010.
[21] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, “Single-layer MoS2 transistors”, Nat. Nanotechnol., Vol. 6, pp. 147-150, 2011.
[22] B. Chamlagain, Q. Li, N. J. Ghimire, H. J. Chuang, M. M. Perera, H. Tu, Y. Xu, M. Pan, D. Xiao, J. Yan, D. Mandrus, Z. Zhou. “Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate”, ACS Nano., Vol.8 No.5, pp. 5079-5088, 2014.
[23] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, “Ultrasensitive photodetectors based on monolayer MoS2”, Nat Nanotechnol. Vol.8 No.7, pp. 497-501, 2013.
[24] S. Das, R. Gulotty, A.V. Sumant, A. Roelofs. “All two-dimensional, flexible, transparent, and thinnest thin film transistor”, Nano Lett., Vol.14 No. 5, pp. 2861-2866, 2014.
[25] M. L. Tsai, S. H. Su, J. K. Chang, D. S. Tsai, C. H. Chen, C. I. Wu, J. H. He, Monolayer MoS2 heterojunction solar cells. ACS nano, 8(8), 8317-8322, 2014.
[26] I. Mahboob, T. D. Veal, C. F. McConville, “Intrinsic Electron Accumulation at Clean InN Surfaces”, Phys Rev Lett., Vol. 92, pp. 036804, 2004
[27] M. D. Siao, W. C. Shen, R. S. Chen, Z. W. Chang, M. C. Shih, Y. P. Chiu, C.-M. Cheng, “Two-dimensional electronic transport and surface electron accumulation in MoS2”, Nat Commun., Vol.9, pp.1442, 2018
[28] Y. S. Chang, wo-dimensional Electronic Transport in MoSe2 Layered Semiconductors, NTUST Taiwan, 2018
[29] Y. W. Chu,, Electrical and Electronic Properties in WS2 Layered Semiconductors ,NTUST Taiwan, 2019.
[30] J. M. Andújar, F. Segura, Fuel cells: History and updating. A walk along two centuries. Renewable and sustainable energy reviews, 13(9), 2309-2322, 2009.
[31] P. Tomczyk, MCFC versus other fuel cells—Characteristics, technologies and prospects. Journal of Power sources, 160(2), 858-862.
[32] Y. W. Chu, Electrical and Electronic Properties in WS2 Layered Semiconductors , NTUST Taiwan,2019.
[33] Y. S. Chang, wo-dimensional Electronic Transport in MoSe2 Layered Semiconductors, NTUST Taiwan,2018
[34] A. Ambrosi, Z. Sofer, M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition. Chemical Communications, 51(40), 8450-8453, 2015.
[35] X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li, N. A. T. Nguyen, T. E. Mallouk, Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano letters, 15(9), 5956-5960, 2015.
[36] R. Bissessur, Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2, J. Chem. Soc. Chem. Commun. 20: 1582-1585, 1993
[37] Y. Jing, B. Liu, X. Zhu, F. Ouyang, J. Sun, Y. Zhou, Tunable electronic structure of two-dimensional transition metal chalcogenide for optoelectronic applications, Nanophotonics, 1(ahead-of-print), 2020
[38] W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, K. Banerjee, Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano letters, 13(5), 1983-1990, 2013.
[39] D. A. Neamen, Semiconductor Physics and Devices, 2011.
[40] H. Li, S. Liu, S. Huang, Q. Zhang, C. Li, X. Liu, Y. Tian, Metallic impurities induced electronic transport in WSe2: First-principle calculations, Chemical Physics Letters, 658, 83-87, 2016.
[41] M. Tahir, Electrical and optical transport properties of single layer WSe2, Physica E: Low-dimensional Systems and Nanostructures, 97, 184-190, 2018.
[42] F. H. Pollak, H. Shen, Modulation spectroscopy of semiconductors: bulk/thin film, microstructures, surfaces/interfaces and devices. Materials Science and Engineering: R: Reports, 10(7-8), xv-374, 1993.
[43] S. Lohumi, M. S. Kim, J. Qin, B. K. Cho, Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials. TrAC Trends in Analytical Chemistry, 93, 183-198, 2017.
[44] B.H. Bransden and C.J. Joachain. Quantum Mechanics 2e. : 545. ISBN 978-0-582-35691-
[45] W. H. Bragg, W. L. Bragg, The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428-438, 1993
[46] B. D. Cullity, S.R. Stock, “Elements of X-ray diffraction, Prentice Hall”, New Jersey , 1993.
[47] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, Vol. 1, pp. 924–939 , 2005.
[48] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, J. Micromech. Microeng., Vol. 14, pp. R15–R34, 2004.
[49] A. A. Tseng, K. Chen, C.D. Chen, K. J. Ma, “Electron beam lithography in nanoscale fabrication: recent development”, IEEE Trans. Electron. Packag. Manuf., Vol. 26, pp. 141–149, 2003.
[50] F. Braet, R. De Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells”, Journal of Microscopy, Vol. 186, pages 84–87, 1997.
[51] H. Hertz, Ueber den einfluss des ultravioletten Lichtes auf die electrische entladung. Annalen der Physik. 1887, 267 (8) (On an effect of ultra-violet light upon the electric discharge).
[52] Z. X. Shen, “Angle-Resolved Photoemission Spectroscopy Studies of Curpate Superconductors”, 2007.
[53] A. Damascelli, Z. Hussain, Z. X. ,Shen, Angle-resolved photoemission studies of the cuprate superconductors. Reviews of modern physics, 75(2), 473, 2003.
[54] A. Damascelli, Probing the electronic structure of complex systems by state-of-art ARPES, 2007.
[55] R. Bissessur, M. G. Kanatzidis, J. L. Schindler, C. R. Kannewurf, Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2. Journal of the Chemical Society, Chemical Communications, (20), 1582-1585, 1993.
[56] D. A. Neamen, “Semiconductor Physics and Devices”, 2011.
[57] K. S. Kim, K. H. Kim, Y. J. Ji, J. W. Park, J. H. Shin, A. R. Ellingboe, G. Y. Yeom, Silicon nitride deposition for flexible organic electronic devices by VHF (162 MHz)-PECVD using a multi-tile push-pull plasma source. Scientific reports, 7(1), 1-7,2017.
[58] B. E. Conway, B. V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 47(22-23), 3571-3594, 2002.
[59] W. Li, G. Liu, J. Li, Y. Wang, L. Ricardez-Sandoval, Y. Zhang, Z. Zhang, Appl. Surf. Sci., 498, 143869, 2019.
[60] M. T. Koper, Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 660(2), 254-260, 2010.
[61] E. Fabbri, A. Habereder, K. Waltar, R. Kötz, T. J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology, 4(11), 3800-3821, 2014.
[62] I. C. Man, H. Y.Su, F. Calle‐Vallejo, H. A. Hansen, J. I. Martinez, N. G. Inoglu, J. Rossmeisl, Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3(7), 1159-1165, 2011.
[63] Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 355(6321), 2017.
[64] Q. Cui, F. Ceballos,N. Kumar, H. Zhao, Transient absorption microscopy of monolayer and bulk WSe2, ACS nano, 8(3), 2970-2976, 2014.
[65] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, M. Pumera, Chem. Commun, 53(21), 3054-3057, 2014.
[66] A. Ambrosi, Z. Sofer, M. Pumera, Chemical Communications, 51(40), 8450-8453, 2015.
[67] M. R. Gao, M. Y. Chan, Y. Sun, Nat. Commun, 6(1), 1-8, 2015.
[68] Y. Wang, B. J. Carey, W. Zhang, A. F. Chrimes, L. Chen, K. Kalantar-Zadeh, T. Daeneke, J. Phys. Chem. C, 120(4), 2447-2455, 2016.
[69] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 133(19), 7296-7299, 2011.
[70] W. Cai, X. Luo, Y. Jiang, Z. Liu, J. Li, L. Ma, H. Cheng, Nitrogen-doped carbon active sites boost the ultra-stable hydrogen evolution reaction on defect-rich MoS2 nanosheets, Int. J. Hydrog. Energy, 43(4), 2026-2033, 2018.
[71] J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X.W. Lou, Y. Xie, Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution, Adv.Mater, 25, 5807–5813, 2013.
[72] L. Wang, X. Li, J. Zhang, H. Liu, W. Jiang, H. Zhao, One-pot synthesis of holey MoS2 nanostructures as efficient electrocatalysts for hydrogen evolution, Appl. Surf. Sci, 396, 1719-1725, 2017.
[73] X. Ren, Q. Ma, P. Ren, Y. Wang, Synthesis of nitrogen-doped MoSe2 nanosheets with enhanced electrocatalytic activity for hydrogen evolution reaction, Int. J. Hydrog. Energy, 43(32), 15275-15280, 2018.
[74] S. Deng, Y. Zhong, Y. Zeng, Y. Wang, Z. Yao, G. Yang, J. Tu, Adv. Mater, Synergistic doping and intercalation: realizing deep phase modulation on MoS2 arrays for high‐efficiency hydrogen evolution reaction, 29(21), 1700748, 2019.
[75] Z. J. Jiang, G. Xie, B. Deng, Z. Jiang, More active sites exposed few-layer MoSe2 supported on nitrogen-doped carbon as highly efficient and durable electrocatalysts for water splitting,Z. Electrochimica Acta, 285, 103-110, 2018.
[76] Y. Yang, S. Wang, J. Zhang, H. Li, Z. Tang, X. Wang, Nanosheet-assembled MoSe 2 and S-doped MoSe 2− x nanostructures for superior lithium storage properties and hydrogen evolution reactions, Inorg. Chem. Front, 2(10), 931-937, 2015.
[77] D. Gao, B. Xia, C. Zhu, Y. Du, P. Xi, D. Xue, J. Wang, Activation of the MoSe 2 basal plane and Se-edge by B doping for enhanced hydrogen evolution, J. Mater. Chem. A, 6(2), 510-515, 2018.
[78] H.Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, Y. Cui, MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces, Nano Lett, 13(7), 3426-3433, 2013.
[79] X. Chen, Y. Qiu, G. Liu, W. Zheng, W. Feng, F. Gao, P. Hu, Tuning electrochemical catalytic activity of defective 2D terrace MoSe 2 heterogeneous catalyst via cobalt doping, J. Mater. Chem. A, 5(22), 11357-11363, 2017.
[80] D. Vikraman, S. Hussain, K. Akbar, K. Karuppasamy, S. H. Chun, J. Jung, H. S. Kim, Design of basal plane edges in metal-doped nanostripes-structured MoSe2 atomic layers to enhance hydrogen evolution reaction activity, ACS Sustain. Chem. Eng, 7(1), 458-469, 2018.
[81] C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, Q. Yan, Ultrathin S-doped MoSe 2 nanosheets for efficient hydrogen evolution, J. Mater. Chem. A, 2 (16), 5597-5601, 2014.
[82] H. Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, N. Liu, Y. Cui, MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano letters, Nano Lett., 13 (7), 3426−33, 2013.
[83] A. Ambrosi, Z. Sofer, M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition, Chemical Communications, 51(40), 8450-8453, 2015.
[84] C. Zhu, Y. Huang, F. Xu, P. Gao, B. Ge, J. Chen, L. Sun, Defect‐Laden MoSe2 Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts, Small, 13(27), 1700565, 2017.
[85] B. Zheng, Y. Chen, F. Qi, X. Wang, W. Zhang, Y. Li, X.Li, 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution, 2D Mater, 4(2), 025092, 2017.
[86] X. Chen, Y. Qiu, G. Liu, W. Zheng, W. Feng, F. Gao, P. Hu, Tuning electrochemical catalytic activity of defective 2D terrace MoSe 2 heterogeneous catalyst via cobalt doping, J. Mater. Chem. A, 5(22), 11357-11363, 2017.
[87] H.Wang, D. Kong, P. Johanes, J. J. Cha, G. Zheng, K. Yan, Y. Cui, MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces, Nano Lett, 13(7), 3426-3433, 2013.
[88] S. Poorahong, R. Izquierdo, M. Siaj, An efficient porous molybdenum diselenide catalyst for electrochemical hydrogen generation, J. Mater. Chem. A, 5(39), 20993-21001, 2017.
[89] H. Tang, K. P. Dou, C. C. Kaun, Q. Kuang , S. H. Yang, MoSe 2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies, J. Mater. Chem. A, 2, 360–364, 2014.
[90] J. Zhang, T. Wang, P. Liu, Y. Liu, J. Ma, D. Gao, Electrochim. Acta, 2016, 217, 181-186
[91] S. Sarker, J. Peters, X. Chen, B. Li, G. Chen, L. Yan, H. Luo, Enhanced catalytic activities of metal-phase-assisted 1T@ 2H-MoSe2 nanosheets for hydrogen evolution, ACS Applied Nano Materials, 1(5), 2143-2152, 2018.
[92] C. Zhu, Y. Huang, F. Xu, P. Gao, B. Ge, J. Chen, L. Sun, Defect‐Laden MoSe2 Quantum Dots Made by Turbulent Shear Mixing as Enhanced Electrocatalysts, Small, 13(27), 1700565, 2017.
[93] Z. Liu, N. Li, H. Zhao, Y. Du, Colloidally synthesized MoSe 2/graphene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution, J. Mater. Chem. A, 3(39), 19706-19710, 2015.
[94] N. Masurkar, N. K. Thangavel, L. M. R. Arava, CVD-grown MoSe2 nanoflowers with dual active sites for efficient electrochemical hydrogen evolution reaction, ACS Appl. Mater. Interfaces, 10(33), 27771-27779, 2018.
[95] S. Deng, Y. Zhong, Y. Zeng, Y. Wang, Z. Yao, G. Yang, J. Tu, Adv. Mater, 2019, 29(21), 1700748.
[96] H. Tang, K. P. Dou, C. C. Kaun, Q. Kuang , S. H. Yang, MoSe 2 nanosheets and their graphene hybrids: synthesis, characterization and hydrogen evolution reaction studies, J. Mater. Chem. A, 2, 360–364, 2014.

無法下載圖示 全文公開日期 2025/08/23 (校內網路)
全文公開日期 2025/08/23 (校外網路)
全文公開日期 2025/08/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE