簡易檢索 / 詳目顯示

研究生: 劉湘君
Hsiang-Chun Liu
論文名稱: 氧化釕/石墨烯複合結構之製備與分析並在電化學電容之應用
Preparation and Characterization of Ruthenium Oxide/Graphene Composites and Their Applications on Electrochemical Capacitors
指導教授: 黃鶯聲
Ying-Sheng Huang
口試委員: 程光蛟
Tiong-Kwong Kau
李奎毅
Lee-Kuei Yi
何清華
Ho-Ching Hwa
趙良君
Liang-Chiun Chao
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 99
中文關鍵詞: 氧化釕石墨烯電化學電容
外文關鍵詞: Ruthenium Oxide, Graphene, Electrochemical Capacitor
相關次數: 點閱:237下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用反應式射頻磁控濺鍍系統 (Reactive radio-frequency magnetron sputtering : RFMS) 沉積氧化釕於石墨烯上,並使用場發射電子顯微鏡 (Field emission scanning electron microscope : FE-SEM)、拉曼光譜儀 (Raman scattering system)、X 光繞射分析儀 (X-ray diffraction : XRD)、X 光光電子能譜儀 (X-ray photoelectron spectrometer : XPS),探討複合結構之特性,進而研究循環伏安圖,充放電行為及交流阻抗的電化學電容應用。
    將二氧化釕濺鍍於已沉積石墨烯的銅網基板上證明石墨烯在反應式射頻磁控濺鍍系統製程過程中不會與通入的氧氣結合而造成破壞。第二部份將石墨烯轉移到Eagle 2000基板上並沉積氧化釕,改變氧化釕成長溫度,結果可從拉曼譜線得知Eg半高寬隨著成長溫度的上升而變窄,此與氧化釕奈米結構尺寸有關。從X 光繞射圖譜得知在低溫下沉積的氧化釕並沒有明顯的繞射峰出現,直到成長溫度為150oC時,有 [110] 及 [101] 面的微弱訊號出現,升高溫度到達200oC時可觀察到 [110] 及 [101] 面訊號變強,且半高寬變窄,此外還偵測到 [111]、[211] 及 [112] 面訊號。樣品的表面形貌可由場發射電子顯微鏡結果得知,隨著成長溫度的上升,其形貌從非晶態薄膜狀轉變為管狀結構。定性與定量分析部份由X 光光電子能譜儀得到,其元素組成大約為Ru : O為 1 : 2。
    接下來固定氧化釕的成長溫度在室溫,並使用快速熱退火爐 (Rapid thermal annealing : RTA) 退火。從拉曼譜線可觀察到As-deposited 的拉曼位移在400 cm-1 以前有一微弱訊號,根據文獻所知此來源可能為含水的二氧化釕特徵峰訊號,半高寬及紅位移現象都與奈米結構的特性和組成有關。退火過後的表面形貌可由場發射電子顯微鏡得知,退火後的晶粒大小約20 nm ~ 80 nm。由X 光繞射圖譜可以觀察到在退火溫度增加到400oC時出現 [110] 面的微弱訊號,退火溫度升高到500oC時 [110] 面訊號變強,此外還偵測到 [101] 面訊號。定性與定量分析部份由X 光光電子能譜儀得知,隨著退火溫度的上升,O 1s 的訊號越強,其元素組成大約為Ru : O為1 : 2。
    此外,對氧化釕/石墨烯複合結構做電化學電容應用。由循環伏安結果得知,隨著氧化釕成長溫度的降低,將石墨烯的比電容值從2 Fg-1 提升至246.1 Fg-1。恆電流充放電實驗中,退火前的氧化釕/石墨烯樣品在經過1000次的循環後,已經完全失去電容效應,無法繼續儲存電容。經過退火過後的結果我們可由循環伏安圖得知,退火200oC下的比電容值 (203.1 Fg-1) 比退火前下降約9%,但經過充放電循環1000次後,所算出的比電容值約197.2 Fg-1 ~ 203.2 Fg-1,依然保有儲存電容的能力,呈現穩定的狀態。綜合以上結果可以歸納出在室溫下沉積氧化釕,並退火200oC,2分鐘,所製備的氧化釕/石墨烯複合結構樣品,可以展現高比電容值及良好的穩定性,因此這對電化學電容的應用是具有相當大的效用。


    Ruthenium oxide with various growth and anneal temperatures were deposited on graphene templates to form RuO/grapheme nanocomposites by reactive radio frequency magnetron sputtering using a Ru metal target. The graphene templates were synthesized on Eagle 2000 and copper screen substrates using floating thermal chemical vapor deposition technique. The detailed characterization focusing on the surface morphology, structural and spectroscopic properties of the RuO/graphene nanocomposites were using field-emission scanning electron microscopy (FESEM), Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The electrochemical capacitor characteristics were also studied.
    FESEM micrographs of ruthenium oxide with different growth temperatures , showed that the surface morphology of the as-deposited ruthenium oxide varied from film to tube-like. After annealing with different temperatures, the grain size of the as-deposited ruthenium oxide of small nano-particle became larger. The attribute of nanosized ruthenium oxide is further manifested by the considerable Raman line broadening. The XRD results indicated of rutile phase RuO2 after growth temperature 150oC and 200oC with peaks intensity I[101]> I [110]> I [211]。XPS analyses revealed oxygen vs. ruthenium ratio of 2:1.
    The specific capacitance results from cyclic voltammetry measurement for RuO/grapheme composites reaches to value about 246.1 Fg-1,which is much larger than that of the pure grapheme (2 Fg-1). The ruthenium oxide be available for the electrochemical reactions. The progressive redox reactions occurring at the surface and faradic charge transfer between electrolyte and electrode. The long-term tests from charge/discharge demonstrated that annealing 200oC decayed slightly even after 1000 cycles at 0.1 mA. This preliminary study demonstrates the potential applications of the RuO/grapheme composites as the electrode material in electrochemical capacitors.

    中文摘要 I Abstract IV 誌謝 VI 目錄 VI 圖目錄 XI 表索引 XV 第一章 緒論 1 1.1 研究動機 1 1.2 電化學電容器-電雙層 1 1.3 二氧化釕 3 1.4 石墨烯 5 1.4.1石墨烯的拉曼分析 6 第二章 實驗方法與步驟 9 2.1 實驗流程 9 2.2 樣品製備 10 2.2.1 實驗藥品及規格 10 2.2.2 實驗中基板清洗所使用之清潔劑 11 2.3 實驗步驟 12 2.3.1 清洗基板 12 2.4 反應式射頻磁控濺鍍系統 13 2.4.1 濺鍍二氧化釕步驟 16 2.5 石墨烯成長與實驗步驟 18 2.6 特性分析方法 21 2.6.1 拉曼光譜儀 (Raman) 21 2.6.2 場發射掃描式電子顯微鏡 (FESEM) 25 2.6.3 X-ray繞射儀 (X-ray Diffraction) 26 2.6.4 X射線光電子能譜儀 (XPS) 29 2.6.5電子式微秤重儀 (Electronic Weighting system) 31 2.6.6循環伏安儀 (Cyclic Voltammetry,CV) 31 2.6.7充放電量測 (Charge/discharge measurement) 32 2.6.8電化學阻抗分析儀 (EIS) 32 2.7 氧化釕/石墨烯複合結構的樣品製備 33 第三章 氧化釕/石墨烯之成長特性分析 34 3.1沉積二氧化釕結構於銅網上 (copper screen) 之特性分析 35 3.1.1拉曼光譜儀 (Raman) 結果與討論 36 3.1.2場發射電子顯微鏡 (FE-SEM) 結果與討論 36 3.2不同成長溫度的氧化釕/石墨烯複合結構之特性分析 38 3.2.1不同成長溫度之拉曼光譜儀結果分析 38 3.2.2不同成長溫度之場發射電子顯微鏡結果分析 41 3.2.3不同成長溫度之X-ray繞射儀結果分析 43 3.2.4不同成長溫度之X 射線光電子能譜儀結果分析 44 3.3不同退火溫度的氧化釕/石墨烯複合結構之特性分析 50 3.3.1不同退火溫度之拉曼光譜儀結果分析 50 3.3.2不同退火溫度之場發射電子顯微鏡結果分析 53 3.3.3不同退火溫度之 X-ray繞射儀結果分析 55 3.3.4不同退火溫度之X 射線光電子能譜儀結果分析 56 第四章 氧化釕/石墨烯之電化學電容特性分析 64 4.1不同成長溫度之Cyclic Voltammetry 分析 64 4.2不同成長溫度EIS分析 67 4.3不同成長溫度之Charge-discharge 分析 68 4.3.1成長溫度25℃之long-term 分析 70 4.4不同退火溫度之 Cyclic voltammetry 分析 71 4.5不同退火溫度之 EIS 分析 73 4.6不同退火溫度之Charge-discharge 分析 74 4.6.1退火溫度200℃之 long-term 分析 76 第五章 結論 77 參考文獻 80

    [1]Y. Xie and D. Fu, "Supercapacitance of ruthenium oxide deposited on titania and titanium substrates," Mater. Chem. Phys., vol. 122, pp. 23-29, 2010.
    [2]K. Kuratani, T. Kiyobayashi, and N. Kuriyama, "Influence of the mesoporous structure on capacitance of the RuO2 electrode," J. Power Sources, vol. 189, pp. 1284-1291, 2009.
    [3]L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, and R. B. Kaner, "Intercalation and exfoliation routes to graphite nanoplatelets," J. Mater. Chem., vol. 15, pp. 974-978, 2005.
    [4]H. Hu, Y. Liu, Q. Wang, J. Zhao, and Y. Liang, "A study on the preparation of highly conductive graphene," Mater. Lett., vol. 65, pp. 2582-2584, 2011.
    [5]P. Sharma and T. S. Bhatti, "A review on electrochemical double-layer capacitors," Energy Convers. Manage., vol. 51, pp. 2901-2912, 2010.
    [6]M. Jayalakshmi and K. Balasubramanian, "Simple capacitors to supercapacitors - an overview," Int. J. Electrochem. Sci., vol. 3, pp. 1196-1217, 2008.
    [7] W. Long, C. I. Merzbacher, and D. R. Rolison, "Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids," Mater. Chem. Phys., vol. 15, pp. 780-785, 1999.
    [8]K. H. Chang and C. C. Hu, "Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors," J. Electrochem. Soc, vol. 146, pp. 2465-2471, 1999.
    [9]W. Ryden, A. Lawson, and C. Sartain, "Electrical transport properties of IrO2 and RuO2," Phys. Rev., vol. 1, pp. 1494-1500, 1970.
    [10]L. K. Elbaum, M. Wittmer, and D. S. Yee, "Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization," Appl. Phys. Lett., vol. 50, pp. 1879-1881, 1987.
    [11]P. A. Mini, A. Balakrishnan, S. V. Nair, and K. R. Subramanian, "Highly super capacitive electrodes made of graphene poly (pyrrole)," Chem. Commun., vol. 47, pp. 5753-5755, 2011.
    [12]J. Soudee, Y. Giraudheraud, P. Pari, and M. Chapellier, "Properties of NTD number-23 Ge sensor and RuO2 films as thermal sensors for bolometers," J. Low Temp. Phys., vol. 93, pp. 319-324, 1993.
    [13]L. A. Bursill, P. Vijay, and S. B. Desu, "Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes," J. Appl. Phys., vol. 75, pp. 1521-1525, 1994.
    [14]S. Sarangapani, J. Forchione, A. Griffith, and A. B. Laconti, "Advanced double layer capacitors," J. Power Sources, vol. 29, pp. 355-364, 1990.
    [15]V. Plichon, "Voltammetry of thermally prepared ruthenium oxide films and flux detection at the electrolyte interface," Electrochim. Acta, vol. 42, pp. 489-492, 1997.
    [16]T. C. Liu and B. E. Conway, "Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes," Electrochim. Acta, vol. 42, pp. 3541-3552, 1997.
    [17]N. L. Wu, "Composite supercapacitor containing tin oxide and electroplated ruthenium oxide," Electrochem. Solid-State Lett., vol. 6, pp. A85-A87, 2003.
    [18]V. D. Patake, C. D. Lokhande, and O. S. Joo, "Electrodeposited ruthenium oxide thin films for supercapacitor: effect of surface treatments," Appl. Surf. Sci., vol. 255, pp. 4192-4196, 2009.
    [19]Y. S. Huang, R. S. Chen, Y. L. Chen, and Y. Chi, "Preparation and characterization of RuO2 thin films from Ru(CO)2(tmhd)2 by metalorganic chemical vapor deposition," Thin Solid Films, vol. 413, pp. 85-91, 2002.
    [20]S. He. P. Lu, F. X. Li, and Q. X. Jia, "Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition," Thin Solid Films, vol. 340, pp. 140-144, 1999.
    [21]P. G. Ganesan, "Chemical vapor deposited RuOx films effect of oxygen flow rate," J. Electrochem. Soc., vol. 149, pp. G510-G516, 2002.
    [22]G. Battaglin, S. Zandolin, A. Benedetti, S. Ferro, L. Nanni, and A. de Battisti, "Microstructural characterization and electrochemical properties of RuO2 thin film electrodes prepared by eeactive radio-frequency magnetron sputtering," Chem. Mater., vol. 16, pp. 946-952, 2004.
    [23]J. H. Lim, H. K. Kim, W. I. Cho, and Y. S. Yoon, "Thin film supercapacitors using a sputtered RuO2 electrode," J. Electrochem. Soc., vol. 148, pp. A275-A278, 2001.
    [24]H. N. Al-Shareef, K. R. Bellur, A. I. Kingon, and O. Auciello, "Influence of platinum interlayers on the electrical properties of RuO2/Pb(Zr0.53Ti0.47)O3/RuO2 capacitor heterostructures," Appl. Phys. Lett., vol. 66, pp. 239-241, 1995.
    [25]S. D. Bernstein, Y. Kisler, and R. W. Tustison, "Fatigue of ferroelectric PbZrxTiyO3 capacitors with Ru and RuOx electrodes," J. Mater. Res., vol. 8, pp. 12-13, 1993.
    [26]Q. X. Jia and W. A. Anderson, "Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode," J. Mater. Res., vol. 9, pp. 2561-2565, 1994.
    [27]H. J. Hass and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," J. Phys. Condens. Matter., vol. 20, 323202, 2008.
    [28]T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
    [29]D. S. Bethune, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer wall," Nature, vol. 363, pp. 605-607, 1993.
    [30]F. O. Zhou, D. W. Murphy, C. H. Chen, R. C. Haddon, A. P. Ramirez, and S. H. Glarum, "Defects in carbon nanotubes," Science, vol. 263, pp. 1744-1747, 1994.
    [31]韋進全, 王昆林, "奈米碳管巨觀體:物理化學特性與應用," 五南, 2009.
    [32]K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. Firsov, "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [33]P. Blake, E. W. Hill, A. H. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Appl. Phys. Lett., vol. 91, 063124 (3pp), 2007.
    [34]S. Shivaraman, R. A. Barton, X. Yu, J. Alden, L. Herman, M. Chandrashekhar, J. Park, P. L. McEuen, J. M. Parpia, H. G. Craighead, and M. G. Spencer, "Free-standing epitaxial graphene," Nano Lett., vol. 9, pp. 3100-3105, 2009.
    [35]C. Berger, N. Brown, C. Naud, D. Mayou, T. Li. J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
    [36]N. Obraztsov, E. A. Obraztsova, and A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007.
    [37]Q. Yu, S. Siriponglert, H. Li, Y. P. Chen, and S. S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Appl. Phys. Lett., vol. 93, 113103 (3pp), 2008.
    [38]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
    [39]L. M. Malard, G. Dresselhaus, and M. S. Dresselhaus, "Raman spectroscopy in graphene," Phys. Reports, vol. 473, pp. 51-87, 2009.
    [40]A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Commun., vol. 143, pp. 47-57, 2007.
    [41]D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, "Properties of graphene: a theoretical perspective," Adv. Phys., vol. 59, pp. 261-482, 2010.
    [42]簡翰中, "化學分析電子儀在分析技術上的最新應用," 電子月刊, pp. 123-132, 2004.
    [43]C. C. Chang, "An investigation of thermally prepared electrodes for oxygen reduction in slkaline solution," Mater. Chem. Phys., vol. 47, pp. 203-210, 1997.
    [44]H. C. Jo, H. Cheong, S. H. Lee, and S. K. Deb, "In situ raman spectroscopy of RuO2 .XH2O," Electrochem. Solid-State Lett., vol. 8, pp. E39-E41, 2005.
    [45]S. Bhaskar, P. S. Dobal, S. B. Majumder, and R. S. Katiyar, "X-ray photoelectron spectroscopy and micro-Raman analysis of conductive RuO2 thin films," J. Appl. Phys., vol. 89, pp. 2987-2790, 2001.

    QR CODE