簡易檢索 / 詳目顯示

研究生: 范光耀
Kuang-Yao Fan
論文名稱: 微型永磁同步電動機驅控系統的小波控制器設計及製作
Design and Implementation of a Wavelet Controller for Micro-Permanent Magnet Synchronous Motor Drive Systems
指導教授: 劉添華
Tian-Hua Liu
口試委員: 黃仲欽
Jonq-Chin Hwang
李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 118
中文關鍵詞: 小波控制器狀態估測器數位訊號處理器微型永磁同步電動機
外文關鍵詞: wavelet controller, state estimator, digital signal processor, micro permanent magnet synchronous motor.
相關次數: 點閱:290下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一個小波控制器應用在微型永磁同步電動機的控速及定位控制。文中提出一個小波控制器架構,藉由小波理論的多重解析特性,可將誤差訊號解析成為不同尺度頻寬的誤差量,並由小波理論適當地設計各種尺度的權重參數,以完成速度及位置迴路的小波控制器設計。藉以改善電動機的暫態響應、加載能力及追蹤能力。文中探討狀態估測器的使用,以改善微型編碼器的解析度不足的問題。
    本文所研製的驅動系統使用德州儀器公司的數位訊號處理器TMS320F28335為控制核心,執行控制器、座標軸轉換及狀態估測器的運算,實測結果與電腦模擬相當符合,說明本文所提出方法的正確性及可行性。


    The thesis proposes a wavelet controller of a speed-control system and a position-control system for micro permanent magnet synchronous motors. By using the multi-resolution analysis scheme, the error signal can be divided into different frequency bands. In addition, different weighted factors can be derived according to the wavelet theory. Both a wavelet controller for a speed-control system and a wavelet controller for a position-control system are designed. The proposed closed-loop system can provide fast responses, good load disturbance responses and good tracking responses. Moreover, a state estimator is used to improve the problem caused by the low resolution micro encoder.
    A digital signal processor, TMS320F28335, is used to execute the control algorithms, coordinate transformation, and state estimating algorithm. Experimental results validate the simulated results to show the correctness and feasibility of the proposed method.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 目的 5 1.4 大綱 5 第二章 微型永磁同步電動機 6 2.1 簡介 6 2.3 應用 10 2.4 數學模式 11 2.5 轉矩控制 17 第三章 狀態估測器的設計 20 3.1 簡介 20 3.2 狀態估測器設計方法 23 3.3 閉迴控速系統設計 28 3.4 靜止狀態啟動策略 29 3.5 低速控速方法 32 第四章 小波控制器設計 33 4.1 簡介 33 4.2 小波轉換 36 4.2.1 離散小波轉換 36 4.2.2 多重解析分析 39 4.2.3 小波控制架構 43 4.3 控制器的設計 46 第五章 系統研製 55 5.1 簡介 55 5.2 硬體電路 56 5.2.1 數位訊號處理器架構 56 5.2.2 驅動級電路 61 5.2.3 電流感測電路 63 5.3 軟體程式設計 65 5.3.1 控制程式設計 67 5.3.2 小波速度閉迴控制程式 70 5.3.3 小波位置閉迴控制程式 72 第六章 實測 74 6.1 簡介 74 6.2 電腦模擬 76 6.2.1 速度控制電腦模擬 76 6.2.2 位置控制電腦模擬 77 6.3 實測及模擬結果 79 第七章 結論與建議 106 參考文獻 108 作者簡介 118

    [1] P. L. Chapman and P. T. Krein, “Smaller is better? [micromotors and electric drives],” IEEE Transactions on Industry Applications Magazine, vol. 9, no. 1, pp. 62-67, Jan./Feb. 2003.
    [2] M. Al-Fandi, M. A. K. Jaradat, K. Fandi, J. P. Beech, J. O. Tegenfeldt, and T. C. Yih, “Nano engineered living bacterial motors for active micro-fluidic mixing,” IET Proceedings Nanobiotechnology, vol. 4, no. 3, pp. 61-71, Sep. 2010.
    [3] V. R. C. Kobe and M. C. Cavusoglu, “Design and characterization of a novel hybrid actuator using shape memory alloy and dc micromotor for minimally invasive surgery applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 455-464, Aug. 2007.
    [4] P. Dario, M. C. Carrozza, C. Stefanini, and S. D’Attanasio, “A mobile microrobot actuated by a new electromagnetic wobble micromotor,” IEEE Transactions on Mechatronics, vol. 3, no. 1, pp. 9-16, Mar.1998.
    [5] K. Suzumori, T. Miyagawa, M. Kimura, and Y. Hasegawa, “Micro inspection robot for 1-in pipes,” IEEE/ASME Transactions on Mechatronics, vol. 4, no. 3, pp. 286-292, Sep.1999.
    [6] E. Sarajlic, C. Yamahata, M. Cordero, and H. Fujita, “Three phase electrostatic rotary stepper micromotor with a flexural pivot bearing,” IEEE Transactions on Microelectromechanical Systems, vol. 19, no. 2, pp. 338-349, Apr. 2010.
    [7] M. Feldmann and S. Buttgenbach, “Linear variable reluctance (VR) micro motors with compensated attraction force: concept, simulation, fabrication and test,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2567-2569, 2007.
    [8] Y. H. Chang, T. H. Liu, and C. C. Wu, “Design and implementation of an H1 controller for a micropermanent-magnet synchronous motor position control system,” IET Electric Power Applications, vol. 2, no. 1, pp. 8-18, 2008.
    [9] Y. H. Chang, T. H. Liu, and C. C. Wu, “Novel adjustable micropermanent-magnet synchronous-motor control system without using a rotor-position/speed sensor,” IEE Proceedings Electric Power Applications, vol. 153, no. 3, pp. 429-438, 2006.
    [10] J. Scott, J. McLeish, and W. H. Round, “Speed control with low armature loss for very small sensorless brushed DC motors,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1223-1229, 2009.
    [11] M. Morimoto, K. Aiba, T. Sakurai, A. Hoshino, and M. Fujiwara, “Position sensorless starting of super high-speed PM generator for micro gas turbine,” IEEE Transactions on Industrial Electronics , vol. 53, no. 2, pp. 415-420, 2006.
    [12] H. C. Chau, B. Chao, X. P. Li, and T. S. Low, “Investigation of core loss in PM micro-motor made using MIM technology,” IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3652-3654, 2000.
    [13] K. Komori and T. Yamane, “Magnetically levitated micro PM motors by two types of active magnetic bearings,” IEEE/ASME Transactions on Mechatronics, vol. 6, no. 1, pp. 43-49, 2001.
    [14] T. C. Neugebauer, D. J. Perreault, J. H. Lang, and C. Livermore, “A six-phase multilevel inverter for MEMS electrostatic induction micromotors,” IEEE Transactions on Circuits and Systems, vol. 51, no. 2, pp. 49-56, 2004.
    [15] P. A. Gilles, J. Delamare, O. Cugat, and J. L. Schanen, “Design of a permanent magnet planar synchronous micromotor,” IEEE IAC-2000 , pp. 223-227,Oct. 2000.
    [16] K. Wiedmann, S. Demmig, and A. Mertens, “Modified sliding mode controller for positioning of micro linear motors,” ECPEA-2007, pp. 1-10, 2007.
    [17] J. Zhang and Q. Jiang, “Sensorless commutation of micro PMSMs for high-performance high-speed applications,” IEEE ICEMS-2005, pp. 1795-1800, 2005.
    [18] J. Zhang and M. Schroff, “High-performance micromotor control systems,” IEEE IECONS-2003, pp. 347-352, 2003.
    [19] A. E. Glazounov, S. Wang, Q. M. Zhang, and C. Kim, “Piezoelectric stepper motor with direct coupling mechanism to achieve high efficiency and precise control of motion,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 47, no. 4, pp. 1059-1067, July 2000.
    [20] J. Friend, K. Nakamura, and S. Ueha, “A piezoelectric micromotor using in-plane shearing of PZT elements,” IEEE/ASME Transactions on Mechatronics, vol. 9, no. 3, pp. 467-473, Sep. 2004.
    [21] D. Shuxiang, S. P. Lim, K. H. Lee, Z. Jingdong, L. C. Lim, and K. Uchino, “Piezoelectric ultrasonic micromotor with 1.5 mm diameter,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, no. 4, pp. 361-367, Apr. 2003.
    [22] M. M. Bech, J. K. Pedersen, and F. Blaabjerg, “Field-oriented control of an induction motor using random pulsewidth modulation,” IEEE Transactions on Industry Applications, vol. 37, no. 6, pp. 1777-1785, Nov./Dec. 2001.
    [23] G. Jang and M. G. Kim, “A bipolar-starting and unipolar-running method to drive a hard disk drive spindle motor at high speed with large starting torque,” IEEE Transactions on Magnetics, vol. 41, no. 2, pp. 750-755, Feb. 2005.
    [24] J. S. Lawler, J. M. Bailey, J. W. McKeever, and J. Pinto, “Extending the constant power speed rang of the brushless DC motor through dual-mode inverter control,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 783-793, May 2004.
    [25] Z. Y. Pan and F. L. Luo, “Novel soft-switching inverter for brushless DC motor variable speed drive system,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 280-288, Mar. 2004.
    [26] R. L. Shi, T. H. Liu, and Y. C. Chang, “Position control of an interior permanent magnet synchronous motor without using a shaft position sensor,” IEEE Transactions on Industrial Electronics, vol. 54, no. 4, pp. 1989-2000, June 2007.
    [27] S. Li and Z. Liu, “Adaptive speed control for permanent magnet synchronous motor system with variations of Load inertia,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp.3050-3059, Aug. 2009.
    [28] Y. A. R. I. Mohamed and E. F. E. Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 92-100, May 2008.
    [29] H. H. Choi, N. T. T. Vu, and J. W. Jung, “Digital implementation of an adaptive speed regulator for a PMSM,” IEEE Transactions on Power Electronics, vol. 26, no. 1, pp. 3-8, Jan. 2011.
    [30] J. Weigold and M. Braun, “Predictive current control using identification of current ripple,” IEEE Transactions on Industrial Electronics, vol. 55, no. 12, pp. 4346-4353, Dec. 2008.
    [31] J. W. Jung, Y. S. Choi, V. Q. Leu, and H. H. Choi, “Fuzzy PI-type current controllers for permanent magnet synchronous motors,” IET Proceedings Electric Power Applications, vol. 5, no. 1, pp. 143-152, Jan. 2011.
    [32] J. W. Jung, T. H. Kim, and H. H. Chio, “Speed control of a permanent magnet synchronous motor with a torque observer: a fuzzy apprroach,” IET Proceedings Control Theory Applications, vol. 4, no. 12, pp. 2971-2981, Dec. 2010.
    [33] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4672-4675, Oct. 2009.
    [34] C. Xia, C. Guo and T. Shi, “A neural network identifier and fuzzy controller based algorithm for dynamic decoupling control of permanent magnet spherical motor,” IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2868-2878, Aug. 2010.
    [35] T. Y. Chou, T. H. Liu, and T. T. Cheng, “Design and implementation of an adaptive inverse controller for a micro-permanent magnet synchronous motor control system,” IET Proceedings-Electric Power Applications, vol. 3, no. 5, pp. 471-481, Sep. 2009.
    [36] A. Nejadpak, A. Mohamed, and O. A. Mohammed, “A Wavelet Based Multi-Resolution Controller for Sensorless Position Control of PM Synchronous Motors at Low Speed,” IEEE IEMDC-2011, pp. 789 - 794, 15-18 May. 2011.
    [37] S. A. Saleh and M. A. Rahman, “Development and testing of a new controlled wavelet-modulated inverter for IPM motor drives,” IEEE Tranascyions on Industry Applications, vol. 46, no. 4, pp. 1630-1643, July/Aug. 2010.
    [38] S. Parvez and Zhiqiang Gao, “A Wavelet-Based Multiresolution PID Controller,” IEEE Transactions on Industry Applications, vol. 41, no. 2, pp. 537 - 543, Mar./Apr. 2005.
    [39] M. A. S. K. Khan and M. A. Rahman, “An adaptive self-tuned wavelet controller for IPM motor drives,” IEEE PESGM-2008, pp. 1 - 4 , 20-24 July 2008.
    [40] M. A. S. K. Khan and M. A. Rahman, “Implementation of a Wavelet-Based MRPID Controller for Benchmark Thermal System,” IEEE Transactions on Industrial Electronics, vol. 57, no. 12, pp. 4160-4169, Dec. 2010.
    [41] M. A. S. K. Khan and M. A. Rahman, “A Novel Neuro-Wavelet-Based Self-Tuned Wavelet Controller for IPM Motor Drives, ” IEEE Transactions on Industry Applications, vol. 46, no. 3, pp. 1194 - 1203, May/June 2010.
    [42] M. A. S. K. Khan and M. A. Rahman, “Implementation of a New Wavelet Controller for Interior Permanent Magnet Motor Drives, ” IEEE Transactions on Industry Applications, vol. 44, no .6,pp. 1957 – 1965, Nov./Dec. 2008.
    [43] S.Tsotoulidis, E. Mitronikas, and A. Safacas, “Design of a Wavelet Multiresolution Controller for a Fuel Cell Powered Motor Drive System, ” IEEE ICEMS-2010, Rome, Italy, pp. 1 – 6, 6-8 Sept. 2010.
    [44] J. Liu, P. Pillay, and H. Douglas, “Wavelet Modeling of Motor Drives Applied to the Calculation of Motor Terminal Overvoltages, ” IEEE Transactions on Industrial Electronics, vol. 51, no. 1,pp. 61 - 66, Feb. 2004.
    [45] E. Mitronikas and E. Tatakis, “Design of a Wavelet Multiresolution Controller for speed control of Travelling wave Ultrasonic Motors, ” IEEE PESC-2008, pp. 3937 - 3942,15-19 Jun. 2008.
    [46] S. A. Saleh, M. Abdesh Khan, and M. A. Rahman, “Application of a Wavelet-Based MRA for Diagnosing Disturbances in a Three-Phase Induction Motor, ” IEEE SDEMPED-2005, pp. 1 – 6, 7-9 Sep. 2005.
    [47] D. Chanda, N. K. Kishore, and A. K. Sinha, “Application of Wavelet Multiresolution Analysis for Classification of Faults on Transmission lines, ” IEEE TENCON-2003,pp. 1464 - 1469, 15-17 Oct. 2003.
    [48] M. R. Khan, A. Iqbal, and M. Ahmad, “A wavelet based de-noising scheme for induction motor drives,” IET-UK ICICT-2007, pp.374-378. Dec. 20-22, 2007.
    [49] M. Jansen and P. Oonincx, “Second Generation Wavelets and Applications”, Springer Verlag, Inc, 2005.
    [50] P. D. Radunovic, “Wavelets: From Math to Practice”, Springer Verlag, Inc, 2009.
    [51] A. Yoo, S. K. Sul, D. C. Lee, and C. S. Jun, “Novel speed and rotor position estimation strategy using a dual observer for low resolution position sensors,” IEEE Transactions on Industrial Electronics, vol. 24, no. 12, pp. 2897-2906, Dec. 2009.
    [52] S. H. Lee and S. A. Velinsky, “Improved velocity estimation for low speed and transient regimes using low resolution encoders,” IEEE Transactions on Mechatronics, vol. 9, no. 3, pp. 553-560, Sept. 2004.
    [53] Z. Feng and P. P. Acarnley, “Extrapolation technique for improving the effective resolution of position encoders in permanent magnet motor drives,” IEEE/ASME Transactions on Mechatronics, vol. 13, no. 4, pp. 410-415, Aug. 2008.
    [54] L. Kovudhikulrungsri and T. Koseki, “Precise speed estimation from a low resolution encoder by dual sampling rate observer,” IEEE/ASME Transactions on Mechatronics, vol. 11, no. 6, pp. 661-670, Dec. 2006.
    [55] N. K. Boggarpu and R. C. Kavanagh, “New learning algorithm for high quality velovity measurement and control when using low cost optical encoders,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 3, pp. 565-574, Mar. 2010.
    [56] S. Sarma, V. K. Agrawal, and S. Udupa, “Software based resolver to digital conversion using a DSP,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 371-379, Jan. 2008.
    [57] Maxon motor catalog, Maxon 2006/07, Apr. 2006, http://www.max-
    onmotor.com/.
    [58] M. A. Jabbar, “Disk drive spindle motors and their controls,” IEEE Transactions on Industrial Electronics, vol. 43, no. 2, pp. 276-284, Apr. 1996.
    [59] A. A. Yasseen, S. W. Smith, F. L. Merat, and M. Mehregany, “Diffraction grating scanners using polysilicon micromotors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 5, pp. 75-82, Jan./Feb. 1999.
    [60] R. J. Wood, “The first takeoff of a biologically inspired at-scale robotic insect,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 341-347, Apr. 2008.
    [61] R. Yokokawa, S. Takeuchi, T. Kon, M. Nishiura, R. Ohkura, M. Edamatsu, K. Sutoh, and H. Fujita, “Hybrid nanotransport system by biomolecular linear motors,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 13, no. 4, pp. 612-619, Aug. 2004.
    [62] B. Kim, S. Lee, J. H. Park, and J. Park, “Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs),” IEEE/ASME Transactions on Mechatronics, vol. 10, no. 1, pp. 77-86, Feb. 2005.
    [63] V. R. C. Kode and M. C. Cavusoglu, “Design and characterization of a novel hybrid actuator using shape memory alloy and DC micromotor for minimally invasive surgery applications,” IEEE/ASME Transactions on Mechatronics, vol. 12, no. 4, pp. 455-464, Aug. 2007.
    [64] Y. X. Yao and A. V. Radun, “Proportional integral observer design for linear systems with time delay,” IET Proceedings Control Theory Applications, vol. 1, no. 4, pp. 887-892, July 2007.
    [65] Z. Gao and D. W. C. Ho, “Proportional multiple integral observer design for descriptor systems with measurement output disturbances,” IEE Proceedings Control Theory Applications, vol. 151, no. 3, pp. 279-288, May 2004.
    [66] T. Y. Chou, T. H. Liu, and T. T. Cheng, “Sensorless micro-permanent magnet synchronous motor control system with a wide adjustable speed range,” IET Proceedings-Electric Power Applications, vol. 6, no. 2 , pp. 62-72, Feb. 2012.
    [67] I. H. Al-Bahadly, “Examination of a sensorless rotor position measurement method for switched reluctance drive,” IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 288-295, Jan. 2008.
    [68] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back EMF sensorless control algorithm for high dynamic performance PMSM,” IEEE Transactions on Industrial Electronics, vol. 57, no. 6, pp. 2092-2100, June 2010.
    [69] M. Y. Wei and T. H. Liu, “A high-Performance Sensorless Position Control System of a Synchronous Reluctance Using Dual Current-Slope Estimating Technique,” IEEE Transactions on Industrial Electronics, vol. 59, no. 9, pp. 3411-3426, Sep. 2012.

    [70] D. Raca, P. Garcia, D. D. Reigosa, F. Briz, and R. D. Lorenz, “Carrier signal selection for sensorless control of PM synchronous machines at zero and very low speed,” IEEE Transactions on Industrial Applications, vol. 46, no. 1, pp. 167-178, Feb. 2010.
    [71] J. K. Seok, J. K. Lee, and D. C. Lee, “Sensorless speed control of nonsalient permanent magnet synchronous motor using rotor position tracking PI controller,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 399-405, Apr. 2006.
    [72] K. B. Lee, and F. Blaabjerg, “Reduced order extended luenberger observer based sensorless vector control driven by matrix converter with nonlinearity compensation,” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 66-75, Feb. 2006.
    [73] S. M. Gadoue, D. Giaouris, and J. W. Finch, “Sensorless control of induction motor drives at very low and zero speeds using neural network flux observers,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3029-3039, Aug. 2009.
    [74] P. Goupillauda, A. Grossmann, and J. Morleta, “Cycle-octave and related transforms in seismic signal analysis,” Geoexploration Amsterdam, vol. 23, no.1, pp. 85-102, 1984.
    [75] I. Daubechies, “Orthonormal bases of compactly support wavelet,” Communications on Pure and Applied Mathematics, vol. 41, Nov. 1988.
    [76] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet Representation,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, July 1989.
    [77] B. C. Kuo,” Automatic Control Systems” Addison-Wesley, 9th ed., 2009.
    [78] Spectrum Digital, eZdspTM F28335 Technical Reference, 2007, http://www.spectrumdigital.com/.

    QR CODE