簡易檢索 / 詳目顯示

研究生: 彭程偉
Cheng-Wei Peng
論文名稱: 具轉矩控制的電動手工具驅動系統之研製
Design and Implementation of Torque Control and Estimation for an Electric Hand-Tool
指導教授: 劉添華
Tian-Hua Liu
口試委員: 李永勳
Yuang-Shung Lee
楊勝明
Sheng-Ming Yang
張永華
Yeong-Hwa Chang
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 110
中文關鍵詞: 直流無刷電動機電動手工具轉矩估測數位信號處理器
外文關鍵詞: brushless dc motor, electric hand tool, torque estimator, digital signal processor
相關次數: 點閱:273下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出低成本的電動手工具轉矩控制及估測的研製。此系統不需使用轉矩感測器及霍爾電流檢知器,僅需使用電阻測量直流無刷電動機通過的電流,即可估測電動手工具的輸出轉矩。文中以比例-積分控制器作為驅動系統的電流控制器,達成有效的螺絲鎖付。此外,所研製系統具有設定轉矩命令及顯示估測轉矩的功能。
    本文使用德州儀器公司所開發的TMS320F2808數位信號處理器作為控制核心,達成電流控制器、轉矩估測,以及螺絲鎖付方法。實驗結果說明本文所提方法的可行性及正確性。


    This thesis proposes a low-cost torque control and estimation for an electric hand tool. Resistances are used to estimate the output torque of the electric hand tool, but no torque sensor or Hall current sensor is required. A PI controller is used to achieve the goal of screwing the objects tightly. In addition, the implemented system provide the functions of setting torque command and display the estimated torque as well.
    A digital signal processor, TMS320F2808, is used as a control center to execute the current control algorithm, torque estimating algorithm, and screwing the objects. Experimental results validated the correctness and feasibility of the proposed method.

    中文摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 X 符號索引 XI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 大綱 6 第二章 直流無刷電動機 7 2.1 簡介 7 2.2 結構及特性 8 2.3 數學模型 11 2.4 驅動方法 15 第三章 電動手工具介紹 20 3.1 簡介 20 3.2 基本架構 20 3.2.1 電動機接線探討 22 3.2.2 減速齒輪 24 3.2.3 轉矩感測器 26 3.2.4 電池組 27 3.3 實際應用 28 第四章 估測及控制方法 29 4.1 簡介 29 4.2 轉矩估測及控制 29 4.3 電流取樣 31 4.4 電流控制器 41 4.5 螺絲鎖付方法 43 4.5.1 卡緊鎖付 43 4.5.2 直接鎖付 44 第五章 電動手工具的驅動系統研製 49 5.1 簡介 49 5.2 硬體電路製作 51 5.2.1 三相變頻器電路 53 5.2.2 電流取樣電路 55 5.2.3 過電流保護電路 57 5.2.4 電源電路 59 5.2.5 七段顯示器介面電路 60 5.2.6 數位信號處理器 61 5.3 軟體程式撰寫 63 5.3.1 主程式流程 63 5.3.2 中斷副程式流程 64 第六章 實測結果 67 6.1 簡介 67 6.2 實測結果 69 第七章 結論與建議 88 參考文獻 89

    [1] B. C. Mecrow, A. G. Jack, and D. J. Atkinson, “High torque machines for power hand tool applications,” IEEE PEMD-2002, no. 487, pp. 644-649, June 2002.
    [2] A. Sathyan, N. Milivojevic, Y. J. Lee, M. Krishnamurthy, and A. Emadi, “An FPGA-based novel digital PWM control scheme for BLDC motor drives,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 3040-3049, Aug. 2009.
    [3] C. S. Joice, S. R. Paranjothi, and V. J. S. Kumar, “Digital control strategy for four quadrant operation of three phase BLDC motor with load variations,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 974-982, May 2013.
    [4] F. Rodriguez and A. Emadi, “A novel digital control technique for brushless DC motor drives,” IEEE Transactions on Industrial Electronics, vol. 54, no. 5, pp. 2365-2373, Oct. 2007.
    [5] T. W. Chun, Q. V. Tran, H. H. Lee, and H. G. Kim, “Sensorless control of BLDC motor drive for an automotive fuel pump using a hysteresis comparator,” IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1382-1391, Mar. 2014.
    [6] N. Milivojevic, M. Krishnamurthy, Y. Gurkaynak, A. Sathyan, Y. J. Lee, and A. Emadi, “Stability analysis of FPGA-based control of brushless DC motors and generators using digital PWM technique,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 343-351, Jan. 2012.
    [7] B. Akin, S. B. Ozturk, H. A. Toliyat, and M. Rayner, “DSP-based sensorless electric motor fault-diagnosis tools for electric and hybrid electric vehicle powertrain applications,” IEEE Transactions on Vehicular Technology, vol. 58, no. 6, pp. 2679-2688, July 2009.
    [8] Y. Wu, Z. Deng, X. Wang, X. Ling, and X. Cao, “Position sensorless control based on coordinate transformation for brushless DC motor drives,” IEEE Transactions on Power Electronics, vol. 25, no. 9, pp. 2365-2371, Sep. 2010.
    [9] R. Shanmugasundram, K. M. Zakariah, and N. Yadaiah, “Implementation and performance analysis of digital controllers for brushless DC motor drives,” IEEE/ASME Transactions on Mechatronics, vol. 19, no. 1, pp. 213-224, Feb. 2014.
    [10] X. Nian, F. Peng, and H. Zhang, “Regenerative braking system of electric vehicle driven by brushless DC motor,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5798-5808, Oct. 2014.
    [11] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4672-4675, Oct. 2009.
    [12] A. Rubaai and J. Jerry, “Hybrid fuzzy bang-bang mode controller with switching function for electric motor drives applications,” IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2269-2276, May/June 2014.
    [13] A. V. Ravi Teja, C. Chakraborty, S. Maiti, and Y. Hori, “A new model reference adaptive controller for four quadrant vector controlled induction motor drives,” IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3757-3767, Oct. 2012.
    [14] J. W. Jung, V. Q. Leu, T. D. Do, E. K. Kim, and H. H. Choi, “Adaptive PID speed control design for permanent magnet synchronous motor drives,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 900-908, Feb. 2015.
    [15] B. Hencey, and A. G. Alleyne, “A robust controller interpolation design technique,” IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp. 1-10, Jan. 2010.
    [16] S. F. Alyaqout, P. Y. Papalambros, and A. G. Mechatronics, “Combined robust design and robust control of an electric DC motor,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 3, pp. 574-582, June 2011.
    [17] X. Zhou and J. Fang, “Precise braking torque control for attitude control flywheel with small inductance brushless DC motor,” IEEE Transactions on Power Electronics, vol. 28, no. 11, pp. 5380-5390, Nov. 2013.
    [18] S. J. Sung, G. H. Jang, and H. J. Lee, “Torque ripple and unbalanced magnetic force of a BLDC motor due to the connecting wire between slot windings,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 3319-3322, Nov. 2012.
    [19] Xintong. Jiang, J. Xing, Y. Li, and Y. Lu, “Theoretical and simulation analysis of influences of stator tooth width on cogging torque of BLDC motors,” IEEE Transactions on Magnetics, vol. 45, no. 10, pp. 4601-4604, Oct. 2009.
    [20] H. W. Kim, K. T. Kim, Y. S. Jo, and J. Hur, “Optimization methods of torque density for developing the neodymium free spoke-type BLDC motor,” IEEE Transactions on Magnetics, vol. 49, no. 5, pp. 2173-2176, May 2013.
    [21] S. K. Lee, G. H. Kang, J. Hur, and B. W. Kim, “Stator and rotor shape designs of interior permanent magnet type brushless DC motor for reducing torque fluctuation,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4662-4665, Nov. 2012.
    [22] B. Akin, M. Bhardwaj, and S. Choudhury, “An integrated implementation of two-phase interleaved PFC and dual motor drive using single MCU with CLA,” IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2082-2091, Nov. 2013.
    [23] V. Bist and B. Singh, “PFC Cuk converter-fed BLDC motor drive,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 871-887, Feb. 2015.
    [24] S. Singh and B. Singh, “A voltage-controlled PFC Cuk converter-based PMBLDCM drive for air-conditioners,” IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 832-838, Mar./Apr. 2012.
    [25] B. Singh and V. Bist, “A BL-CSC converter-fed BLDC motor drive with power factor correction,” IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 172-183, Jan. 2015.
    [26] M. Masmoudi, B. El Badsi, and A. Masmoudi, “DTC of b4-inverter fed BLDC motor drives with reduced torque ripple during sector-to-sector commutations,” IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4855-4865, Sep. 2014.
    [27] J. Kedarisetti and P. Mutschler, “A motor-friendly quasi-resonant DC-link inverter with lossless variable zero-voltage duration,” IEEE Transactions on Power Electronics, vol. 27, no. 5, pp. 2613-2622, May 2012.
    [28] C. T. Pan and E. Fang, “A phase-locked-loop-assisted internal model adjustable-speed controller for BLDC motors,” IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3415-3425, Sep. 2008.
    [29] P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 661-668, Sep. 2010.
    [30] S. B. Ozturk, W. C. Alexander, and H. A. Toliyat, “Direct torque control of four-switch brushless DC motor with non-sinusoidal back EMF,” IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 263-271, Feb. 2010.
    [31] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 2, pp. 351-360, Apr. 2011.
    [32] H. Lu, Z. Lei, and W. Qu, “A new torque control method for torque ripple minimization of BLDC motors with un-ideal back EMF,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 950-958, Mar. 2008.
    [33] S. Y. Jung, Y. J. Kim, J. Jae, and J. Kim, “Commutation control for the low-commutation torque ripple in the position sensorless drive of the low-voltage brushless DC motor,” IEEE Transactions on Power Electronics, vol. 29, no. 11, pp. 5983-5994, Nov. 2014.
    [34] Q. Han, N. Samoylenko, and J. Jatskevich, “Comparison of brushless DC motor drives with 180/120-degree inverter systems,” IEEE CCECE-2007, pp. 111-114, Apr. 2007.
    [35] 孫清華, 最新直流無刷馬達, 全華科技圖書, 2001.
    [36] J. Ho. Song and I. Choy, “Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 312-319, Mar. 2004.
    [37] Y. Gu, F. Ni, D. Yang, and H. Liu, “Switching-state phase shift method for three-phase-current reconstruction with a single DC-Link current sensor,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5186-5194, Nov. 2011.
    [38] B. Hafez, A. S. Abdel-Khalik, A. M. Massoud, S. Ahmed, and R. D. Lorenz, “Single sensor-based three-phase permanent magnet synchronous motor drive system with luenberger observers for motor line current reconstruction,” IEEE Transactions on Industry Applications, vol. 50, no. 4, pp. 2602-2613, July/Aug. 2014.
    [39] Texas Instruments, TMS320x280x Digital Signal Precessors, 2002.
    [40] Texas Instruments, TMS320x280x DSP Analog to Digital Converter, 2004.
    [41] Texas Instruments, TMS320x280x Enhanced Controller Area Network, 2002.

    無法下載圖示 全文公開日期 2020/06/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE