簡易檢索 / 詳目顯示

研究生: 黃文彥
Wen-Yan Huang
論文名稱: 水冷式引擎整體之熱傳性能改良
Improvement of Heat Transfer Performance of Water-Cooled Internal Combustion Engine
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 陳明志
Ming-Jyh Chern
孫珍理
Chen-Li Sun
葉啟南
Chi-Nan Yeh
劉昌煥
Chang-Huan Liu
楊騰芳
Teng-Fang Yang
唐永新
Yung-Hsin Tang
張家和
Chia-Ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 144
中文關鍵詞: 引擎水冷式熱傳
外文關鍵詞: engine, heat transfer, water-cooled internal combustion engine
相關次數: 點閱:356下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘 要
引擎汽缸頭與缸壁溫度的均勻度取決於汽缸頭與汽缸水套的幾何形狀與流場狀態,而入水口、出水口與墊片開口的位置對溫度均勻分佈的影響更為深鉅。因此,本研究利用商業套裝計算流體力學(computational fluid dynamics, CFD)軟體STAR-CD,針對一部四行程單缸水冷式引擎之散熱機構,進行模擬計算並結合實驗方法,改良汽缸水套的設計,以提升其散熱效果。設計過程先以數值計算的方式,給定一個均勻熱通量,模擬計算原始汽缸頭與汽缸水套的速度、溫度以及熱傳係數的分佈,將此熱傳係數當成不變量。然後實驗量測原始汽缸的缸頭與缸壁溫度分佈,進而得知水套欲修改的方向。將熱對流係數與實驗量得的缸頭與缸壁溫度輸入數值計算程式,得到缸頭與缸壁的局部熱通量。由於汽缸頭的溫度非常不均勻,且在排氣埠附近特別高。因此,將原引擎由汽缸壁入水的模式改為由汽缸頭入水,再進入汽缸水套,並在汽缸頭流道中以數個擋板作為調整冷卻水流動路線的結構體,在汽缸水套中增加一片擋板,以引導流體行經較完整的缸壁流道,一共進行12種流道的調整模型。將原引擎的局部熱通量與熱傳係數輸入修改引擎的模型進行計算模擬,得出修改引擎汽缸頭與缸壁的溫度分佈,最後得出一個最佳化的設計。將此最佳化設計做成實體模型,在引擎測試台上進行溫度量測。結果顯示,缸頭外圈的最高溫度由173 oC降為93oC;內圈由220oC降為143oC。外圈平均溫度由106 oC降為92 oC;內圈由143 oC降為121 oC。缸壁的溫度則沒有太大變化,呈現可接受的型態。由實際引擎性能實驗結果,缸頭的溫度調整,造成引擎馬力與扭矩些微提升,油耗幾乎沒有變化,HC的排放在低轉速時下降,在高轉速時稍微升高。顯示此一溫度調整幅度很大,可以解決原始引擎熱應力集中的問題,且不影響引擎性能。


Abstract
A methodology is developed to improve the heat dissipation performance of a single-cylinder, four-stroke-cycle, water-cooled engine by employing the experimental method in conjunction with the numerical simulation technique. At first, the commercial code, STAR-CD, is employed to calculate the velocities of cooling water, temperatures of cylinder head and cylinder wall, and heat transfer coefficient distributions of the engine walls by providing an uniform heat flux to the cylinder head and cylinder. The heat transfer coefficients are obtained by using a empirical formula imbedded in the numerical code. The calculated heat transfer coefficients are assumed to be unvaried for the modified engine. The real temperature distributions around the engine cylinder and the cylinder head are measured experimentally by attaching 40 T-type thermocouples with 250 m bead diameter to circumferential positions of the engine cylinder and cylinder head. The measured temperature data and the calculated heat-transfer coefficients are used to compute the local heat flux by using the fundamental conduction heat transfer formula. With the distributions of heat flux, the STAR-CD is employed to calculate the flow field and the temperature distributions of the fluids and the cylinder walls of the modified engine. Totally 12 modified engine designs are studied. The water inlet for the original engine is moved to the cylinder heat and few blockage structures are added to guide the path of the cooling water in the water jacket of the cylinder head and the cylinder. A optimized design is obtained numerically. The new design is mockup and the temperature distributions are experimentally measured. The results show that the maximum temperatures of the outer and inner circumferential of the original engine are 173oC and 220oC, respectively. In the modified engine, they decreased by a large quantity of about 80 oC to 93oC and 143oC, respectively. The average temperatures of the outer and inner circumferential of the original engine are 106oC and 143oC, respectively. In the modified engine, they decreased by a large quantity to 92oC and 121oC, respectively.

目 錄 摘要 i Abstract ii 目錄 iii 符號索引 v 表圖索引 viii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 3 1.3 研究目的 8 第二章 實驗方法、設備與儀器 10 2.1 實驗方法 10 2.2 實驗設備與儀器 10 2.2.1 引擎 10 2.2.2 動力計 11 2.2.3 油耗量測設備 11 2.2.4 廢氣量測設備 11 2.2.5 流量量測設備 12 2.2.6 溫度量測系統 12 第三章 計算模擬方法 14 3.1 數值模擬 14 3.1.1 離散化方法 14 3.1.2 計算網格 15 3.1.3 邊界條件與初始條件 16 3.2 利用CFD方法計算缸壁局部熱通量 17 3.2.1 統御方程式與紊流模式 17 3.2.2 離散方程式 22 3.2.3 SIMPLE算法 23 3.2.4 收斂標準 27 3.2.5 壁面函數法 28 3.2.6 一維熱傳方程式 31 3.2.7 熱通量的修正方法 32 第四章 原始引擎的水套流場與溫度分佈 35 4.1 原始引擎溫度量測結果 35 4.2原始引擎水套流場計算結果 37 4.3原始引擎溫度計算結果 38 第五章 計算修改引擎水套後的流場與溫度分佈 39 5.1修正引擎水套參數說明 39 5.2入水口於汽缸體之設計 MA1 ~ MA6 41 5.2.1 MA1 ~ MA4入水口位置的修正 41 5.2.2 MA5 ~ MA6入水口高度的修正 42 5.3入水口於汽缸頭之設計 MB1 ~ MB6 43 5.3.1 MB1 ~ MB3汽缸體擋板的修正 43 5.3.2 MB4 ~ MB6改變入水口角度、位置的修正 44 第六章 最佳化設計的結果 46 6.1 最佳設計修正形式 46 6.2 最佳設計實驗結果 46 6.3 最佳設計與原始引擎結果比較 47 第七章 結論與建議 49 7.1結論 49 7.2建議 50 參考文獻 52

參考文獻

[1] Aoyagi, Y., Takenaka, Y., Niino, S., Watanabe, A. and Joko, I., “Numerical Simulation and Experimental Observation of Coolant Flow Around Cylinder Liners in V-8 Engine,” Journal of Engines, SAE Transactions, Vol. 97, 1988, pp. 141-150, SAE 880109.
[2] 李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
[3] Harashina, K., Murata, K., and Satoh, H., “A New Cylinder Cooling System Using Oil,” Journal of Engines, SAE Transactions-Section 3, Vol. 104, 1995, pp. 1846-1850, SAE 951796.
[4] Boeman, G. and Nishiwaki, K., “Internal-Combustion Engine Heat Transfer,” Progress in Energy and Combustion Science, Vol. 13, No. 1, 1987, pp. 1-46.
[5] Alkidas, A. C., Puzinauskas, P. V., and Peterson, R. C., “Combustion and Heat Transfer Studies in a Spark-Ignited Multivalve Optical Engine,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, pp. 817-830, SAE 900353.
[6] Chen, C. and Veshagh, A., “A One-Dimensional Model for In-Cylinder Heat Convection Based on the Boundary Layer Theory,” Journal of Engines, SAE Transactions-Section 3, Vol. 101, 1992, pp. 1776-1792, SAE 921733.
[7] Jennings, M. J. and Morel, T., “A Computational Study of Wall Temperature Effects on Engine Heat Transfer,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 641-656, SAE 910459.
[8] Li, C. H., “Thermal and Mechanical Behavior of an L-4 Engine,” Journal of Engines, SAE Transactions, Vol. 97, 1988, pp. 1318-1331, SAE 881149.
[9] Abraham, J., Ramoth, D. and Manniato, J., “3D Steady-State Wall Heat Fluxes and Thermal Analysis of a Stratifird-Charge Rotary Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, pp. 1214-1226, SAE 910706.

[10] Chiodi, M. and Bargende, M., “Improvement of Engine Heat-Transfer Calculation in the three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model,” Journal of Engines, SAE Transactions-Section 3, Vol. 110, 2001, pp. 2291-2303, SAE 2001-01-3601.
[11] Kleemann, A. P., Menegazzi, P., and Henriot, S., “Numerical Study Knock for SI Engine by Thermally Coupling Combustion Chamber and Cooling Circuit Simulation,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 821-831, SAE 2003-01-0563.
[12] Miyairi, Y., “Computer Smulation of an LHR Di Diesel Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 97, 1988, pp. 282-293, SAE 880187.
[13] Bohac, S. V., Barker, D. M., and Assanis, D. N., “ A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies,” Journal of Engines, SAE Transactions-Section 3, Vol. 105, 1996, pp. 196-214, SAE 960073.
[14] Fiveland, S. B. and Assanis, D. N., “A Four-Stroke Homogeneous Charge Compression Ignition Engine Simulation for Combustion and Performance Studies,” Journal of Engines, SAE Transactions-Section 3, Vol. 109, 2000, pp. 452-468, SAE 2000-01-0332.
[15] Shiozawa, T., Nakanishi, A., Ozawa, T., and Oki, T., “Thermal Air Flow Analysis of an Automotive Headlamp-The PIV Measurement and the CFD Simulation by Using a Skeleton Model,” Journal of Passenger Cars: Mechanical Systems, SAE Transactions-Section 6, Vol. 109, 2000, pp. 1098-1104, SAE 2000-01-0802.
[16] Launder, B. E. and Spalding, D. B., Lectures in Mathematical Models of Turbulence, London , New York: Academic Press, 1972.
[17] Mitty, T. J., Jameson, A., and Baker, T. J., “Solution of Three-Dimensional Supersonic Flowfields via Adapting Unstructured Meshes,” Computer and Fluids, Vol. 22, No. 2/3, 1993, pp. 271-282.

[18]

Pirzadeh, S., “Structured Background Grids for Generation of Unstructured Grids by Advancing-Front Method,” AIAA Journal, Vol. 31, No. 2, 1993. pp.257-265.
[19] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonsteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
[20] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Harlow, Essex, England: Longman, 1995.
[21] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional,” Int. J. Heat mass Transfer, Vol. 15, No. 10, 1972, pp. 1787-1806.
[22] Jayatilleka, C. L., “The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-Layer to Momentum and Heat Transfer,” Progress in Heat and Mass Transfer, Vol. 1, Pergamon Press Inc., 1969, pp. 193-329.

無法下載圖示 全文公開日期 2012/07/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE