簡易檢索 / 詳目顯示

研究生: 周立翔
Li-Hsiang Chou
論文名稱: 三軸球體拋光監控系統與單晶矽晶球拋光材料移除率分析研究
Study of Three-Cup Sphere Polishing Monitoring System and Analysis on Material Removal Rate of Monocrystalline Silicon Sphere Polishing Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 劉昭華
Chao-Hwa Liu
趙崇禮
Choung-Lii Chao
劉顯光
Hsien-Kuang Liu
林榮慶
Zone-Ching Lin
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 239
中文關鍵詞: 單晶矽晶球球體拋光拋光軌跡三軸球體拋光監控系統比材料移除能
外文關鍵詞: Monocrystalline Silicon Sphere, Sphere polishing, Polishing trajectory, Three-cup sphere polishing monitoring system, Specific energy of material removal
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 精密單晶矽晶球可以透過計算同位素矽晶體中的原子數來確定亞佛加厥常數,在新制國際單位(New SI)中扮演重要的角色,但在精密球體的加工過程中,為了達到球體均勻地加工,必須瞭解球體於拋光製程中的運動狀態。本研究將化學機械拋光(Chemical mechanical polishing, CMP)導入球體拋光製程中,並針對三軸球體拋光系統進行力與力矩平衡式分析,瞭解球體於製程中的運動行為,並建立拋光軌跡動態數學模型。以三軸球體拋光監控系統及薄膜壓力感測器量測系統量測製程拋光功率與量化靜態負載力。實驗以黃玉石球進行參數測試後,再將最佳化製程參數應用於由直徑100 mm (4吋)單晶矽晶錠加工成之直徑94.9466 mm球體。透過奈米壓痕機械性質分析儀進行奈米刮痕實驗(Nano scratch test),計算比材料移除能並預測體積材料移除率。以三次元座標量測儀(Coordinate Measurement Machine, CMM)量測半球體,並依據點資料計算得出真球度(Sphericity)。本研究完成研發三軸單晶矽晶球CMP製程,製程後真球度達3.6 μm,平均表面粗糙度Sa達5 nm。研究成果未來可應用於四軸(Four-cup)精密球體拋光機之研發,製造工業標準所需之新制國際單位標準球。


    Precision monocrystalline silicon sphere plays an important role in the New International System of Unit (New SI) because it can determine the Avogadro constant by counting the atoms in an isotopic silicon crystal. In this study, chemical mechanical polishing (CMP) is applied on a three-cup sphere polishing process. Based on force-moment balance formulation, the study aims to develop a dynamic mathematical model of sphere polishing trajectory in a three-cup sphere polishing machine. Moreover, the three-cup sphere polishing monitoring system and the thin film pressure sensor measurement system have been established to measure the power signals and quantify the static load force of polishing. Experiments are initially carried out with topaz spheres then polishing parameters are adapted to monocrystalline silicon sphere with a diameter of 94.9466 mm which is manufactured from an ingot of diameter 100 mm (4”) cylinder. The material removal rate is predicted using specific energy of material removal based on nano-scratch tests by nano-indenter instrument. The sphericity is evaluated from the data points measured on the hemisphere by the coordinate measurement machine (CMM). Results of this study have developed a CMP process of monocrystalline silicon spheres to achieve the sphericity as 3.6 μm and the average surface roughness Sa as 5 nm. Future development can be used as a source for developing a four-cup machine for fabrication of new SI standard sphere for industrial reference.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 XII 表目錄 XX 符號表 XXIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 第二章 文獻回顧 7 2.1 矽晶球製作過程相關文獻 7 2.2 球體研磨與拋光製程相關文獻 10 2.3 拋光製程訊號偵測相關文獻 18 2.3.1 機械訊號偵測 19 2.3.2 光電訊號偵測 24 2.3.3 化學訊號偵測 27 2.4 拋光製程訊號偵測相關專利 28 2.4.1 機械訊號偵測專利整理 28 2.4.2 光電訊號偵測專利整理 33 2.4.3 化學訊號偵測專利整理 37 2.5 相關文獻統整 38 第三章 拋光軌跡模擬 43 3.1 三軸球體拋光系統之幾何模型 43 3.1.1 三軸球體拋光系統之幾何結構介紹 43 3.1.2 三軸球體拋光系統座標系定義 45 3.2 三軸球體拋光軌跡模擬分析方法 47 3.2.1 三軸球體拋光系統受力分析 47 3.2.2 三軸球體拋光系統運動分析 49 3.2.3 單一點之運動方程式 50 3.2.4 接觸圓軌跡方程式 53 3.2.5 拋光球表面積覆蓋率方程式 55 3.3 三軸球體拋光軌跡模擬 57 3.3.1 Group A #1 (CW、CW、CW) 58 3.3.2 Group B #3 (CW、CW、CCW) 60 3.3.3 Group C #5 (CW、CCW、CW) 62 3.3.4 Group D #7 (CCW、CW、CW) 64 3.4 三軸球體拋光系統軌跡模擬結果與討論 66 第四章 三軸球體拋光系統介紹 68 4.1 三軸球體拋光系統運作原理 68 4.2 三軸球體拋光系統之架構 69 4.2.1 硬體設備 69 4.2.1.1 系統之機械結構 69 4.2.1.2 樹酯拋光杯 70 4.2.1.3 交流感應馬達 72 4.2.1.4 變頻器(交流馬達驅動器) 74 4.2.1.5 控制箱電路設計 76 4.2.2 通訊協定與人機介面 79 4.2.2.1 Modbus RTU通訊協定 81 4.2.2.2 LabVIEW人機介面 83 4.2.3 薄膜力量感測器量測系統 85 4.3 三軸球體拋光系統校正方式 89 4.3.1 方位角與水平校正 89 4.3.2 三軸下壓力校正 90 4.3.3 球體中心校正 91 第五章 球體拋光實驗設備及規劃 92 5.1 球體拋光實驗設備 92 5.1.1 三軸球體拋光系統 92 5.1.2 雷射切割雕刻機 93 5.2 實驗耗材 95 5.2.1 黃玉石球 95 5.2.2 單晶矽晶球 96 5.2.3 拋光液 97 5.2.4 拋光墊 99 5.2.4.1 ICSU複合墊 99 5.2.4.1 H800精拋墊 100 5.3 量測儀器 101 5.3.1 轉子型數位黏度計 101 5.3.2 雷射粒徑分析儀 102 5.3.3 三次元座標量測儀 103 5.3.4 雷射共軛焦顯微鏡 104 5.3.5 奈米壓痕機械性質分析儀 106 5.4 實驗規劃與流程 107 5.5 真球度分析計算 110 第六章 球體拋光 113 6.1 三軸球體拋光系統軌跡驗證實驗(EXP.A) 113 6.1.1 Group A #1 ( CW、CW、CW)軌跡驗證實驗 114 6.1.2 Group B #3 (CW、CW、CCW)軌跡驗證實驗 115 6.1.3 Group C #5 (CW、CCW、CW)軌跡驗證實驗 117 6.1.4 Group D #7 (CCW、CW、CW)軌跡驗證實驗 118 6.1.5 三種轉向疊加之SSCR驗證實驗 120 6.2 黃玉石球拋光實驗(EXP.B) 121 6.2.1 黃玉石球材料移除率分析 122 6.2.2 黃玉石球比材料移除能分析 122 6.2.3 黃玉石球真球度改善率分析 131 6.2.4 黃玉石球表面粗糙度分析 134 6.3 奈米壓痕與奈米刮痕實驗 140 6.3.1 奈米壓痕實驗 140 6.3.2 奈米刮痕實驗 144 6.3.2.1 奈米刮痕形貌與力學分析 145 6.3.2.2 奈米刮痕比材料移除能分析 150 6.4 單晶矽晶球拋光實驗(EXP.C) 156 6.4.1 單晶矽晶球粗拋光 158 6.4.2 單晶矽晶球精拋光 161 6.5 綜合結果與討論 165 第七章 結論與建議 167 7.1 結論 167 7.2 建議 168 參考文獻 170 附錄A MATLAB三軸球體拋光軌跡模擬程式碼 174 附錄B 美國COVINGTON三軸球拋機規格 184 附錄C ARDUINO 薄膜力量感測器程式碼 185 附錄D MITUTOYO CMM量測程式 187 附錄E MATLAB 真球度計算程式碼 192 附錄F 黃玉石球拋光後實體圖 194 附錄G 黃玉石球真球度量測數據 195 附錄H 黃玉石球表面粗糙度量測數據 198 附錄I 單晶矽晶球表面粗糙度量測數據 207

    [1] R. Davis, "The SI unit of mass," Metrologia, vol. 40, no. 6, p. 299, 2003.
    [2] B. Wood and H. Bettin, "The Planck constant for the definition and realization of the kilogram," Annalen der Physik, vol. 531, no. 5, p. 1800308, 2019.
    [3] A. Nicolaus, R. Meeß, and G. Bartl, "New Avogadro spheres for the redefinition of the kilogram," in Key Engineering Materials, 2014, vol. 613, pp. 17-25: Trans Tech Publ.
    [4] F. Löffler, "Manufacturing Process Chain for Silicon Spheres," ed. Germany,: Physikalisch-Technische Bundesanstalt, 2015.
    [5] R. Meeß, G. Hinzmann, and A. Lück, "Improved manufacturing process chain for silicon spheres," presented at the euspen’s 15th International Conference & Exhibition, Belgium, June 5, 2015.
    [6] W. Angele, "Finishing high precision quartz balls," Precision Engineering, vol. 2, no. 3, pp. 119-122, 1980.
    [7] A. Leistner and G. Zosi, "Polishing a 1-kg silicon sphere for a density standard," Applied optics, vol. 26, no. 4, pp. 600-601, 1987.
    [8] A. Leistner and W. Giardini, "Fabrication and testing of precision spheres," Metrologia, vol. 28, no. 6, p. 503, 1991.
    [9] 柴田順二, "球体のはなし," Journal of the Japan Society for Abrasive Technology, vol. 55, no. 12, pp. 746-747, 2011.
    [10] Y. Peng et al., "Sphere precessions polishing method," Optical Engineering, vol. 60, no. 6, p. 064108, 2021.
    [11] 廖紘毅, "銅膜晶圓化學機械拋光之終點偵測研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020.
    [12] T. Kojima, M. Miyajima, F. Akaboshi, T. Yogo, S. Ishimoto, and A. Okuda, "Application of CMP process monitor to Cu polishing," IEEE transactions on semiconductor manufacturing, vol. 13, no. 3, pp. 293-299, 2000.
    [13] T. K. Das, R. Ganesan, A. K. Sikder, and A. Kumar, "Online end point detection in CMP using SPRT of wavelet decomposed sensor data," IEEE transactions on semiconductor manufacturing, vol. 18, no. 3, pp. 440-447, 2005.
    [14] H. Jeong, H. Kim, S. Lee, and D. Dornfeld, "Multi-Sensor Monitoring System in Chemical Mechanical Planarization (CMP) for Correlations with Process Issues," CIRP Annals, vol. 55, no. 1, pp. 325-328, 2006.
    [15] H. Hocheng and Y.-L. Huang, "In Situ Endpoint Detection by Acoustic Emissions in Chemical–Mechanical Polishing of Metal Overlay," IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 3, pp. 306-312, 2007.
    [16] 蔡岳勳, "電致動力應用於銅化學機械拋光平坦化效應研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
    [17] H. Li, X. Lu, and J. Luo, "Motor power signal analysis for end-point detection of chemical mechanical planarization," Micromachines, vol. 8, no. 6, p. 177, 2017.
    [18] 林昱銘, "電致動力輔助化學機械平坦化加工之雙向交錯式電極開發應用於矽導微孔晶圓研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2017.
    [19] Z. Qu et al., "Cu Layer thickness monitoring in CMP process by using eddy current sensor," in ICPT 2012-International Conference on Planarization/CMP Technology, 2012, pp. 1-5: VDE.
    [20] S. Bourzgui, A. Roussy, G. Georges, E. Faivre, K. Labory, and A. Allard, "Device pattern impact on optical endpoint detection by interferometry for STI CMP," in ICPT 2017; International Conference on Planarization/CMP Technology, 2017, pp. 1-6: VDE.
    [21] T. Fujita and K. Kitade, "Development of endpoint detection using optical transmittance and magnetic permeability based on skin effect in chemical mechanical planarization," Precision Engineering, vol. 57, pp. 95-103, 2019.
    [22] D.Zeidler, M.Plotner, and K.Drescher, "Endpoint detection method for CMP of copper," Semiconductor and Microsystems Technology Laboratory, Dresden University of Technology, 01062 Dresden, Germany, 2000.
    [23] W. J. Cote, J. E. Cronin, W. R. Hill, and C. A. Hoffman, "Endpoint detection apparatus and method for chemical/mechanical polishing," U.S. Patent No. 5,308,438, 1994.
    [24] N. Kimura, F. Sakata, and T. Takahashi, "Polishing endpoint detection method," U.S. Patent No. 5,639,388, 1997.
    [25] H.-C. Chen and S.-L. Hsu, "Chemical/mechanical planarization (CMP) endpoint method using measurement of polishing pad temperature," U.S. Patent No. 5,597,442, 1997.
    [26] F. Zhang, "Chemical/mechanical polishing endpoint detection device and method," U.S. Patent No. 6,547,637, 2003.
    [27] A. Bello and M. Wedlake, "Methods and systems for chemical mechanical planarization endpoint detection using an alternating current reference signal," U.S. Patent No. 10,343,253, 2019.
    [28] N. E. Lustig, K. L. Saenger, and H.-M. Tong, "In-situ endpoint detection and process monitoring method and apparatus for chemical-mechanical polishing," U.S. Patent No. 5,433,651, 1995.
    [29] T. Takahashi, K. Tohyama, and T. Takahashi, "Polishing apparatus having endpoint detection device," U.S. Patent No. 5,672,091, 1997.
    [30] B. Swedek and A. N. Wiswesser, "Endpoint detection with light beams of different wavelengths," U.S. Patent No. 6,190,234, 2001.
    [31] T. Matsuzaki, "CMP apparatus and method of polishing wafer using CMP," U.S. Patent No. 8,221,191, 2012.
    [32] F.-S. Lee, C.-C. Chen, J.-C. Lee, and H.-C. Huang, "Method for endpoint detection for copper CMP," U.S. Patent No. 6,179,691, 2001.
    [33] T. K. Das, R. Ganesan, A. K. Sikder, and A. J. I. t. o. s. m. Kumar, "Online end point detection in CMP using SPRT of wavelet decomposed sensor data," vol. 18, no. 3, pp. 440-447, 2005.
    [34] Dayton, "Dayton Operating Instructions and Parts Manual," vol. Form 5S4031, ed. Niles, Illinois 60714 U.S.A.: Manufactured for Dayton Electric Mfg. Co.
    [35] Modbus-Organization, "Modbus_Application_Protocol," vol. 1.1b3, ed. United States: The Modbus Organization, 2022.
    [36] G. Thomas, "Introduction to the modbus protocol," The Extension, vol. 9, no. 4, pp. 1-4, 2008.
    [37] Tekscan, "Calibration Quick Start Guide For Flexiforce Sensors," Rev 032415 ed. South Boston, United States: Tekscan Inc.
    [38] Tekscan, "Tekscan FlexiForce Sensor A201 Manual," DS Rev I 062821 ed. South Boston, United States: Tekscan, Inc., 2021.
    [39] C.-C. A. Chen, W.-C. Pu, and M. P. Trai, "Development on Advanced Chemical Mechanical Polishing Process for Manufacturing of Monocrystalline Silicon Sphere of Kilogram Prototype," Chinese Society of Mechanical Engineers, 2020.
    [40] 陳炤彰, 卜偉晉, M. P. Trai, "先進化學機械拋光法於單晶矽球之質量原器製造研究" 科技部工程司109年度機械固力學門成果發表會, 21 Nov. 2021.
    [41] Moore-Nanotech, "Nanotech 350FG Specification Overview," ed. United States: Moore Nanotechnology Systems, 2007.
    [42] O. V. Zakharov, N. M. Bobrovsky, A. V. Kochetkov, S. N. Grigoriev, and I. N. Bobrovsky, "A sphericity measurement method based on the minimum measuring zone," in AIP Conference Proceedings, 2016, vol. 1785, no. 1, p. 040094: AIP Publishing LLC.

    無法下載圖示 全文公開日期 2024/09/29 (校內網路)
    全文公開日期 2024/09/29 (校外網路)
    全文公開日期 2024/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE