簡易檢索 / 詳目顯示

研究生: 張士宸
Shih-Chen Chang
論文名稱: 氣液輔助化學機械拋光應用於單晶碳化矽基板之平坦化製程分析研究
Research on Gas Liquid Assisted Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Substrate
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 陳士勛
Shih-Hsun Chen
林欽山
Ching-Shaw Lin
陳順同
Shun-Tong Chen
趙崇禮
Choung-Lii Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 170
中文關鍵詞: 4H單晶碳化矽基板材料移除率氣液輔助化學機械拋光高功率元件
外文關鍵詞: 4H SiC substrate, Material removal rate, GLA-CMP, High power device.
相關次數: 點閱:475下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

單晶碳化矽基板(Silicon Carbide, SiC),具有高崩潰電壓(High Breakdown Voltage)及低的阻抗, 因此在高功率元件市場的潛力無窮,但單晶碳化矽基板也因高硬度及高抗化學性等特質,面臨加工時間冗長、成本過高等問題。本研究主要研究4H單晶碳化矽基板的化學機械拋光(Chemical Mechanical Polishing, CMP)製程以降低製程時間為目標進行研究。本研究建構一氣液輔助化學機械拋光系統(Gas Liquid Assisted Chemical Mechanical Polishing, GLA-CMP),此系統將氧氣直接導入拋光液供給設備腔體至氧分壓達3 bar之壓力,以提升拋光液含氧量(~0.00396 mole/L),增加其化學反應的速率,達到較高效率之拋光製程。研究方法先進行拋光液在不同氧分壓下溶氧量變化情形,並透過維克式硬度及接觸角驗證單晶碳化矽表面之反應層,後續將GLA-CMP應用於兩吋單晶碳化矽拋光標準片(As-polished wafer)及單面研光片(As-lapped wafer),並分別使用能量散佈分析儀 (EDS)及X光光電子能譜儀(XPS)針對拋光後之表面進行元素分析,結果證實GLA-CMP相較於傳統CMP確實可以加速表面二氧化矽層之生成,本研究依據實驗結果建立一套材料移除模型,分析製程中各因子之影響。GLA-CMP應用於兩吋單晶碳化矽拋光標準片及單面研光片,平均材料移除率相較於傳統CMP製程提升了11.2%及16.3%;最後將GLA-CMP應用於四吋單晶碳化矽晶圓拋光標準片上,相較傳統CMP製程拋光移除率增益9.1%,應用於四吋單晶碳化矽晶圓雙面研光片上,以表面粗糙度Ra值0.10 nm為製程終點,可縮短26.3%製程時間,未來研究著重於試量產製程之研發測試。


Monocrystalline Silicon Carbide (SiC) substrate has high breakdown voltage and low resistivity electrical properties. It has a great potential for applying in high power devices. However, high hardness and brittleness result in long processing time of fabrication process. This study aims to enhance the
material removal rate (MRR) of chemical mechanical polishing (CMP) processes on 2 inch and 4 inch single-crystal silicon carbide wafer. A gas liquid assisted chemical mechanical polishing (GLA-CMP) method with adjustable high oxygen concentration has been developed with CMP slurry chamber (~3bar) by gas regulating device. The chemical reaction rate has been enhanced by high oxygen content (~68.54 mg/L). Experimental results successfully reveal that the substrate surface has obtained a reaction layer and verified via contact angle test, Vickers hardness, energy dispersive spectrometers (EDS), and X-ray photoelectron spectroscopy(XPS). From the results of EDS and XPS, the proportion of silicon oxide components on SiC surface after GLA-CMP process exists higher proportion than that after conventional CMP process. In this study, MRR has improved as 11.2% for 2 inch as-polished (As-Pol) SiC wafer, 16.3 % for 2 inch as-lapped (As-Lap) SiC wafer and 9.1% for 4 inch as-polished (As-Pol) SiC wafer. Additionally, the process time of planarization is reduced as 26.3% compared to that by conventional CMP process. Surface roughness (Ra<0.10 nm) is achieved with GLA-CMP for 4 inch SiC wafer (As-lap). Future study can focus on a movel slurry supply system for GLA-CMP of SiC wafer process.

摘要 III Abstract IV 誌謝 V 第一章 緒論 1 1.1研究背景 1 1.2研究目的與方法 2 1.3論文架構 4 第二章 文獻回顧 6 2.1單晶碳化矽基板材料介紹 6 2.2單晶碳化矽基板CMP製程設備相關文獻 9 2.3單晶碳化矽基板CMP拋光液相關文獻 16 2.4單晶碳化矽基板CMP製程設備相關專利 19 2.5單晶碳化矽基板CMP拋光液相關專利 21 2.6文獻回顧總結 22 第三章 單晶碳化矽晶圓平坦化製程介紹 25 3.1 硬脆基板材料機械性質 25 3.2 平坦化製程模型建立 27 3.2.1 傳統化學機械拋光製程模型建立 27 3.2.2氣液輔助化學機械拋光製程模型建立 33 3.3 單晶4H-SiC基板材料移除機制 40 3.4 單晶碳化矽晶圓平坦化製程介紹總結 42 第四章 GLA-CMP實驗設備與規劃 43 4.1 GLA-CMP實驗設備 43 4.1.1 GLA-CMP實驗系統 43 4.1.2 M15-PVS密閉式拋光機 45 4.1.3 密閉式拋光液供給系統 46 4.2 GLA-CMP實驗耗材 47 4.2.1 研光盤 47 4.2.2拋光墊 48 4.2.3研光液 49 4.2.4拋光液 51 4.2.5單晶4H-SiC晶圓 53 4.3 量測儀器 54 4.4 實驗規劃 55 4.4.1 高含氧拋光液分析(實驗A) 56 4.4.2兩吋單晶4H-SiC基板化學機械拋光(實驗B) 57 4.4.3四吋單晶4H-SiC基板化學機械拋光(實驗C) 59 4.5 GLA-CMP實驗參數設定 61 第五章 GLA-CMP實驗結果與討論 62 5.1 高含氧拋光液分析(實驗A) 63 5.1.1 去離子水不同過氧化氫濃度之溶氧及酸鹼值分析(A-1) 63 5.1.2 去離子水不同氧分壓之溶氧及酸鹼值分析(A-2) 65 5.1.3 不同過氧化氫濃度之DSC0902溶氧及酸鹼值分析(A-3) 67 5.1.4 不同氧分壓之DSC0902溶氧及酸鹼值分析(A-4) 69 5.1.5 不同氧分壓DSC0902+H2O2(6wt%)溶氧及酸鹼值分析(A-5) 71 5.2 兩吋單晶4H-SiC基板矽面平坦化製程(實驗B) 73 5.2.1 CMP製程參數探討 73 5.2.2CMP 材料移除模型建立 79 5.2.3GLA-CMP參數探討 84 5.2.4GLA-CMP材料移除模型建立 89 5.2.5CMP與GLA-CMP製程比較 96 5.3 四吋單晶4H-SiC基板矽面平坦化製程整合分析(實驗D) 108 5.3.1 四吋單晶4H-SiC CMP及GLA-CMP製程差異探討 108 5.3.2四吋單晶4H-SiC CMP及GLA-CMP整體製程效益分析 112 5.4 綜合結果與討論 118 第六章 結論與建議 120 6.1 結論 120 6.2 建議 121 參考文獻 122 附錄A 兩吋單晶4H-SiC基板矽面靜態測試(維克式硬度分析) 126 附錄B 兩吋單晶4H-SiC基板矽面靜態測試(接觸角分析) 132 附錄C 溶氧量線上監測結果 133 附錄D Slurry Tank 設計示意圖 134 附錄E 四吋單晶碳化矽表面粗糙度 136 附錄F 單晶碳化矽基板次表層裂縫拍攝 143 附錄G XPS資料 147

[1] T. Hamagucherohm, "The Next Generation of Power Conversion Systems Enabled by SiC Power Devices," ROHM Semiconductor, 2014.
[2] V. Stefan and E. V. Zharikov. (2002). Crystal and Epitaxial Growth.
[3] S.-K. Lee. (2002, Processing and Characterization of Silicon Carbide (6H- and 4H-SiC) Contacts for High Power and High TemperatureDevice Applications.
[4] Y. Zhou, G. Pan, X. Shi, S. Zhang, H. Gong, and G. Luo, "Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers," Tribology International, vol. 87, pp. 145-150, 2015.
[5] O. Ohnishi, T. Doi, S. Kurokawa, T. Yamazaki, M. Uneda, T. Yin, et al., "Effects of Atmosphere and Ultraviolet Light Irradiation on Chemical Mechanical Polishing Characteristics of SiC Wafers," Japanese Journal of Applied Physics, vol. 51, p. 05EF05, 2012.
[6] H. Deng and K. Yamamura, "Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing," CIRP Annals - Manufacturing Technology, vol. 62, pp. 575-578, 2013.
[7] 楊竣凱, "複合式能量化學機械拋光於單晶碳化矽基板平坦化製程之研究," 碩士學位論文, 國立台灣科技大學, 2013.
[8] T. K. Doi, Y. Sano, S. Kurowaka, H. Aida, O. Ohnishi, M. Uneda, et al., "Novel Chemical Mechanical Polishing:Plasma- Chemical Vaporization Machining (CMP:P-CVM) Combined Processing of Hard-to-Process Crystals Based on Innovative Concepts," Sensors and Materials, vol. 26, pp. 403-415, 2014.
[9] H. Deng, K. Hosoya, Y. Imanishi, K. Endo, and K. Yamamura, "Electro-chemical mechanical polishing of single-crystal SiC using CeO2 slurry," Electrochemistry Communications, vol. 52, pp. 5-8, 2015.
[10] 陳鼎鈞, "單晶碳化矽基板之鑽石研光與化學機械拋光平坦化製程研究," 碩士學位論文, 國立台灣科技大學, 2014.
[11] M. Y. Tsai, S. M. Wang, C. C. Tsai, and T. S. Yeh, "Investigation of increased removal rate during polishing of single-crystal silicon carbide," The International Journal of Advanced Manufacturing Technology, vol. 80, pp. 1511-1520, 2015.
[12] T. Yin, T. Doi, S. Kurokawa, O. Ohnishi, T. Yamazaki, Z. Wang, et al., "Processing Properties of Strong Oxidizing Slurry and effect of processing atmosphere in sic-cmp," presented at the ICPT, Grenoble, France, 2012.
[13] Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, et al., "XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)," Applied Surface Science, vol. 316, pp. 643-648, 2014.
[14] Y. Zhou, G. Pan, X. Shi, H. Gong, G. Luo, and Z. Gu, "Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry," Surface and Coatings Technology, vol. 251, pp. 48-55, 2014.
[15] 土肥俊郎, "拋光工件的拋光裝置及方法," 中華人民共和國 Patent, 2005.
[16] 陳炤彰, 周炳伸, and 杜維剛, "氣體添加研磨液的供應系統及其方法," 中華人民共合和國 Patent, 2015.
[17] 新田浩士, "碳化矽研磨用組合物," 2011.
[18] 森永均, "研磨用組成物," 中華人民共和國 Patent, 2012.
[19] F. Zhao, W. Du, and C.-F. Huang, "Fabrication and characterization of single-crystal 4H-SiC microactuators for MHz frequency operation and determination of Young’s modulus," Microelectronic Engineering, vol. 129, pp. 53–57, 2014.
[20] M. A. Hopcroft, W. D. Nix, and T. W. Kenny, "What is the Young's Modulus of Silicon?," Microelectromechanical Systems vol. 19, pp. 229 - 238, 2010.
[21] X. Luo, S. Goel, and R. L. Reuben, "A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide," the European Ceramic Society, vol. 32, pp. 3423–3434, 2012.
[22] T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho, et al., "The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks," Materials Processing Technology, vol. 194, pp. 52–62, 2007.
[23] R. Saidur, M. I. Jahirul, M. Hasanuzzaman, and H. H. Masjuki, "Analysis of exhaust emissions of natural gas engine by using response surface methodology," Journal of Applied Sciences, vol. 8, pp. 3328-3339, 2008.
[24] C. C. A. Chen, Manufacturing Analysis," Department of Mechanical Engineering,, 2013.
[25] W. Henry, "Experiments on the Quantity of Gases Absorbed by Water at Different Temperatures and under Different Pressures," Philosophical Transactions of the Royal Society of London, vol. 93, pp. 29-42+274-276, 1803.
[26] H. Nitta, A. Isobe, t. J. Hong, and T. Hirao, "Research on Reaction Method of High Removal Rate Chemical Mechanical Polishing Slurry for 4H-SiC Substrate," Japanese Journal of Applied Physics, vol. 50, p. 046501, 2011.
[27] H. Deng, K. Endo, and K. Yamamura, "Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)," Sci Rep, vol. 5, p. 8947, 2015.
[28] Y. Hijikata, H. Yaguchi, M. Yoshikawa, and S. Yoshida, "Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films," Applied Surface Science, vol. 184, pp. 161–166, 2001.
[29] K. Shimoda, J.-S. Park, T. Hinoki, and A. Kohyama, "Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics," Applied Surface Science, vol. 253, pp. 9450-9456, 2007.
[30] B. P. Swain, "The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy," Surface and Coatings Technology, vol. 201, pp. 1589-1593, 2006.

QR CODE