簡易檢索 / 詳目顯示

研究生: 陳冠霖
Kuan-Lin Chen
論文名稱: 三相永磁式同步機線圈開路故障之速度控制
Speed Control of Open-Winding Faults in Three-Phase PMSMs
指導教授: 藍振洋
Chen-Yang Lan
口試委員: 黃仲欽
Jonq-Chin Hwang
藍振洋
Chen-Yang Lan
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 三相永磁式同步機單相線圈故障四開關三相變頻器
外文關鍵詞: three phase permanent-magnet synchronous motor, single-phase open-winding failure, four-switch three-phase inverter
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在分析當發生單相線圈故障時,研製四開關三相變頻器之永磁式同步電動機之驅動器,以當做故障後控制策略。電力電路採用四開關三相變頻器,其驅動器採用磁滯控制與單極性正弦脈波寬頻調變做比較。三相永磁式電動機其中一相故障,可以由另外兩相電流增加、降低轉速,增加系統可靠性。永磁式同步電動機故障控制策略藉由回授其三相電流以判斷系統故障之繞組,使系統能修正未故障之兩相電流,將未故障之兩相電流相差60度相位,並增大√3倍,使能夠保持其原先輸出之轉矩。配合永磁式同步電動機電流回授及座標軸轉換,使交、直軸電流閉迴路與轉速閉迴路控制。
    本文以Matlab/Simulink模擬軟體完成永磁式同步電動機及負載、三相變頻器、交軸與直軸電流閉迴路控制、轉速閉迴路控制與故障運轉之分析。


    The purpose of this article is to analyze the driver of a three phase permanent-magnet synchronous motor(PMSM) with a four-switch three-phase inverter when a single-phase open-winding failure occurs as a post-failure control strategy. The power circuit uses a four-switch three-phase inverter, and its driver uses hysteresis control to compare with unipolar sinusoidal pulse width modulation. If one phase of the three-phase permanent magnet motor fails, the current of the other two phases can increase and decrease the speed to increase the system reliability. The fault control strategy of the permanent magnet synchronous motor determines the faulty winding of the system by feeding back its three-phase current, so that the system can correct the unfaulted two-phase current, and the unfaulted two-phase current can be corrected by 60 degrees angle difference, increases by √3 times larger in order to maintain its original output torque. Cooperate with the current feedback and coordinate transformation of permanent magnet synchronous motor to control the closed-loop control of q-d current and speed closed-loop control.
    In this thesis, Matlab/Simulink simulation software is used to complete the analysis of permanent magnet synchronous motor, loading, three-phase inverter, closed-loop control of q-d current, speed closed-loop control and fault tolerant control strategy.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 2 1.3 本文大綱 2 第二章 文獻回顧 3 2.1 永磁式同步馬達驅動器常見故障分類 3 2.2 馬達驅動器故障診斷及容錯控制 5 2.3 永磁式同步馬達及其驅動器的控制方面分類 6 第三章 永磁同步馬達模式及變頻器 10 3.1 前言 10 3.2 三相永磁式同步機模式 10 3.3 三相永磁式同步馬達在轉子旋轉座標系統模式 14 3.4 三相變頻器及其控制策略 17 3.4.1 三相變頻器介紹 17 3.4.2 三相變頻器abc相之電壓開關模式 18 3.4.3 三相變頻器之控制 20 3.5 三相永磁式同步機控制策略 23 第四章 永磁式同步馬達單相故障的控制策略 27 4.1 前言 27 4.2 三相變頻器及永磁式同步馬達的單相故障結構 27 4.3 永磁式同步馬達單相故障的模式及控制策略 29 第五章 模擬結果與討論 34 5.1 磁滯電流控制 35 5.2 電流預測控制 44 5.3 模擬討論 53 第六章 結論與未來展望 54 6.1 結論 54 6.2 未來展望 54 參考文獻 55 附錄A 62

    [1] B. Mirafzal, “Survey of Fault-Tolerance Techniques for Three-Phase Voltage Source Inverters,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5192-5202, 2014.
    [2] Zhifu Wang, J Yang, H Ye et al., “A review of Permanent Magnet Synchronous Motor fault diagnosis,” Transportation Electrification Asia-Pacific, IEEE, pp. 1-5, 2014.
    [3] Wangguang, Zhonghua Wang, Dongxue Wang,Yueyang Li, Meng Li, “A Review on Fault-Tolerant Control of PMSM,” 2017 Chinese Automation Congress(CAC), pp. 3854-3859, 2017.
    [4] D. Kastha, B. K. Bose, “Investigation of fault modes of voltage fed inverter system for induction motor drive,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 1028-1038, Jul. /Aug. 1994.
    [5] R. de Araujo Ribeiro, C. Jacobina, E. Cabral da Silva, and A. Lima, “Fault detection of open-switch damage in voltage-fed PWM motor drive systems,” Power Electronics IEEE Transactions on, vol. 18, no. 2, pp. 587-593, 2003.
    [6] S. Nandi, H.A. Toliyat, L. Xiaodong, “Condition monitoring and fault diagnosis of electrical motors – a review,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 719-729, 2005.
    [7] Sung-Guk Ahn, Byoung-Gun Park, Rae-Young Kim, Dong-Seok Hyun, “Fault Diagnosis for Open-Phase Faults of Permanent Magnet Synchronous Motor Drives Using Extended Kalman Filter,” Proceedings of IECON 2010, pp. 835-840, 2010.
    [8] Moosavi, S.S.; Esmaili, Q.; Djerdir, A.; Amirat, Y.A., “Inter-Turn Fault Detection in Stator Winding of PMSM Using Wavelet Transform,” In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 11–14 December 2017; pp. 1–5.
    [9] Mazzoletti, M.A.; Bossio, G.R.; De Angelo, C.H.; Espinoza-Trejo, D.R. A Model-Based Strategy for Interturn Short-Circuit Fault Diagnosis in PMSM. IEEE Trans. Ind. Electron. 2017, 64, 7218–7228.
    [10] Cira, F.; Arkan, M.; Gumus, B.; Goktas, T. Analysis of stator inter-turn short-circuit fault signatures for inverter-fed permanent magnet synchronous motors. In Proceedings of the IECON 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 24–27 October 2016; pp. 1453–1457.
    [11] Bochao Du, Shumei Cui, shouliang Han, Guoliang Wu, Bingliang Xu, "A Simple Diagnosis of Winding Short-Circuited Fault of PMSM for Electric Vehicle ", Proceedings of IEEE Vehicle Power and Propulsion Conference, pp. 88-91, 2012.
    [12] Liang, Y. Diagnosis of inter-turn short-circuit stator winding fault in PMSM based on stator current and noise. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Busan, South Korea, 26 February–1 March2014; pp. 138–142.
    [13] Kyeong-Hwa Kim, "Simple Online Fault Detecting Scheme for Short-Circuited Turn in a PMSM Through Current Harmonic Monitoring ", Proceedings of IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, pp. 2565-2568, 2011.
    [14] J. Rosero, L. Romeral, J. A. Ortega, J. C. Urresty, "Demagnetization Fault Detection by means of Hilbert Huang Transform of the stator current Decomposition in PMSM ", Proceedings of ISIE 2008, pp. 172-177, 2008.
    [15] Kim, K. “Simple Online Fault Detecting Scheme for Short-Circuited Turn in a PMSM Through Current Harmonic Monitoring”, IEEE Trans. Ind. Electron. 2011, 58, 2565–2568.
    [16] J. Rosero, A. Garcia, J. Cusido, L. Romeral, J.A. Ortega, "Fault Detection by means of Hilbert Huang Transform of the stator current in a PMSM with Demagnetization ", Proceedings of WISP 2007, pp. 1-6, 2007.
    [17] Kim, K.C.; Lim, S.B.; Koo, D.H.; Lee, J., “The Shape Design of Permanent Magnet for Permanent Magnet Synchronous Motor Considering Partial Demagnetization,” IEEE Trans. Magn. 2006, 42, 3485–3487.
    [18] J. Rosero, J. Cusido, A. Garcia, J. A. Ortega, L. Romeral, "Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor ", Proceedings of Annual Conference of the IEEE Industrial Electronics Society, pp. 964-969, 2006.
    [19] Zhongming, Y.; Bin, W.,“A Review on Induction Motor Online Fault Diagnosis,” In Proceedings of the IPEMC Third International Power Electronics and Motion Control Conference (IEEE Cat. No.00EX435), Beijing,China, 15–18 August 2000; pp. 1353–1358.
    [20] J. Rosero, L. Romeral, E. Rosero, J. Urresty, "Fault Detection in dynamic conditions by means of Discrete Wavelet Decomposition for PMSM running under Bearing Damage [C]", Proceedings of APEC 2009, pp. 951-956, 2009.
    [21] Rosero, J.A.; Cusido, J.; Garcia, A.; Ortega, J.A.; Romeral, L., “Broken Bearings and Eccentricity Fault Detection for a Permanent Magnet Synchronous Motor,” In Proceedings of the IECON 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 7–10 November 2006; pp. 964–969.
    [22] Ishikawa, T.; Seki, Y.; Kurita, N. “Analysis for Fault Detection of Vector-Controlled Permanent Magnet Synchronous Motor with Permanent Magnet Defect,” IEEE Trans. Magn. 2013, 49, 2331–2334.
    [23] Ruoho, S.; Kolehmainen, J.; Ikaheimo, J.; Arkkio, A. “Interdependence of Demagnetization, Loading, and Temperature Rise in a Permanent-Magnet Synchronous Motor,” IEEE Trans. Magn. 2010, 46, 949–953.
    [24] Zhu, M.; Hu,W.; Kar, N.C. “Torque-Ripple-Based Interior Permanent-Magnet Synchronous Machine Rotor Demagnetization Fault Detection and Current Regulation.” IEEE Trans. Ind. Appl. 2017, 53, 2795–2804.
    [25] Haylock, J.A.; Hoefer, U.M.; Jack, A.G. “Predicting and preventing demagnetisation in permanent magnet motor drives.” In Proceedings of the 3rd IET International Conference on Power Electronics, Machines and Drives, Dublin, Ireland, 4–6 April 2006; pp. 474–478.
    [26] R. J. Montoya et. al. Restructurable Controls. NASA Scientific and Technical Information Branch, Washington, USA, 1983.
    [27] P. R. Chandler. Self-repairing flight control system reliability and maintainability program executive overview. In Proc. of the IEEE National Aerospace and Electronics Conference, 586-590, Dayton, OH, 1984.
    [28] J. S. Eterno, J. L. Weiss, D. P. Looze, and A.S. Willsky. Design issues for fault tolerant-restructurable aircraft control. In Proc. of the 25th IEEE Conf. on Decision and Control, 900-905, Ft. Lauderdale, FL, Dec. 1985.
    [29] Zhang Y., Jiang J., Bibliographical review on reconfigurable fault-tolerant control systems, in Proceedings of the 5th IFAC Symposium Fault Detection Supervision and Safety of Technical Processes, SAFEPROCESS, Washington,D.C., USA 2003, 265−276.
    [30] Liang Y., Liaw D., Lee T., “Reliable control of nonlinear systems,” IEEE Transactions on Automatic Control, Vol. 45, No. 4, 2000, 706−710.
    [31] Liao F., Wang J., Yang G., “Reliable robust flight tracking control: an LMI approach,” IEEE Transactions on Control Systems Technology, Vol. 10, No. 1, 2000, 76−89.
    [32] Qu Z., Ihlefeld C., Yufang J., Saengdeejing A., “Robust fault-tolerant self-recovering control of nonlinear uncertain systems,” Automatica, Vol. 39, No. 10, 2003, 1763−1771.
    [33] Zhang Y., Jiang J., “Bibliographical review on reconfigurable fault-tolerant control systems,” Annual Reviews in Control, Vol. 32, No. 2, 2008, 229−252.
    [34] Pillay P., Krishnan R, “Modeling, simulation, and analysis of permanent-magnet motor drives. I. The permanent-magnet synchronous motor drive,” IEEE Trans. Industry Applications, vol. 25, no.3, pp. 265-273, 1989.
    [35] D. Ocean, “Direct Torque Control of a Permanent Magnet synchronous Motor, ” master's thesis, 2005.
    [36] V. M. Bida, D. V. Samokhvalov, F. S. Al-Mahturi, “PMSM Vector Control Techniques - a survey,” 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), pp. 577-581, Jan 2018.
    [37] S. Hussain, M. Bazaz, “Comparative Analysis of Speed Control Strategies for Vector Controlled PMSM Drive,” Int. Conference on Computing, Communication and Automation (ICCCA), 2016.
    [38] M. Depenbrock, “Direct self control of inverter-fed induction machines,” IEEE Trans. Power Electron., vol. 3, pp. 420--429, Oct. 1988.
    [39] I. Takahashi and T. Noguchi, “A new quick-response and high efficiency control strategy of an induction machine,” IEEE Trans. Ind. Applicat., vol. IA-22, pp. 820–827, Sept./Oct. 1986.
    [40] C. Lascu, I. Boldea, F. Blaabjerg, “Direct Torque Control via Feedback Linearization for Permanent Magnet Synchronous Motor Drives,” IEEE 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), pp. 338-343, 2012.
    [41] S. K. Dwivedi, M. Laursen, S. Hansen, “Voltage vector based control for PMSM in industry applications,” 2010 IEEE International Symposium on Industrial Electronics, pp. 3845-3850, 2010.
    [42] G. Buja and M. Kazmierkowski, “Direct torque control of PWM inverter-fed AC motors - a survey,” IEEE Trans. Ind. Electron., vol.51, issue: 4 pp. 744 - 757, 2004.
    [43] A. Abdelyazid, “Passivity Based Control for Permanent-Magnet Synchronous Motors, Recent Advances in Robust Control - Theory and Applications in Robotics and Electromechanics,” Dr. Andreas Mueller (Ed.), ISBN: 978-953-307-421-4, InTech, 2011.
    [44] M. Ouassaid, M. Cherkaoui, A. Nejmi, M. Maaroufi, “Nonlinear Torque Control for PMSM: A Lyapunov Technique Approach,” World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering, vol. 1, no. 6, 2007.
    [45] 黃仲欽教授,電機機械理論講義
    [46] J. R. Fu and T. A. Lipo, “A strategy to isolate the switching device fault of a current regulated motor drive,” Conference Record of the 1993 IEEE Industry Applications Society Annual Meeting, vol. 2, pp. 1015-1020, Oct. 1993.
    [47] T. H. Liu, J. R. Fu, and T. A. Lipo, “A strategy for improving reliability of field-oriented controlled induction motor drives,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 910-918, Sep./Oct. 1993.
    [48] T. Elch-her, J. P. Hautier, “Remedial strategy for inverter-induction machine system faults using two-phase operation,” in Fifth European Conference on Power Electronics and Applications, 1993, Sept. 13-16, 1993, vol. 5, pp. 151-156.
    [49] M. B. R. Correa, C. B. Jacobina, E. R. C. Silva, and A. M. N. Lima, “An induction motor drive system with improved fault tolerance,” IEEE Trans. Ind. Appl., vol. 37, no. 3, pp. 873-879, May-June 2001.
    [50] O. Jasim, C. Gerada, M. Sumner, and J. Arellano-Padilla, “Operation of an induction motor with an open circuit fault by controlling the zero sequence voltage,” in Proc. IEEE Int. Conf. Electrical Machines and Drives, May 3-6, 2009, pp. 1426-1433.
    [51] K. D. Hoang, Ziqiang Q. Zhu, Martin P. Foster, David A. Stone, “Comparative study of current vector control performance of alternate fault tolerant inverter topologies for three-phase PM brushless ac machine with one phase open - circuit fault,” Power Electronics, Machines and Drives (PEMD 2010), April 2010, pp. 19-21.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE