簡易檢索 / 詳目顯示

研究生: 李家瑜
Jia-Yu Lee
論文名稱: 雙組三相永磁式同步電動機位置控制系統研製
Development of Position Control Systems for Double-Three-Phase Permanent-magnet Synchronous Motor
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 林法正
Faa-Jeng Lin
顏吉永
Chi-yung Yen
林長華
Chang-Hua Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 雙組三相永磁式同步電動機雙組三相變頻器電壓空間向量脈波寬度調變控制轉速及電流閉迴路控制位置閉迴路控制
外文關鍵詞: double-three-phase permanent-magnet synchronous motor, double-three-phase inverter, voltage space vector pulse width modulation, speed and current close loop control, position close loop control
相關次數: 點閱:512下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製雙組三相永磁式同步電動機驅動的位置閉迴路控制系統。本文電動機結構為定子12槽,轉子10極,定子繞組為雙組三相的結構,驅動器的電力電路為雙組三相變頻器,具有分散電流及散熱功能,並採用電壓空間向量脈波寬度調變控制以提高直流鏈的電壓利用率,系統的回授裝置使用電流感測元件及解角器,以回授雙組三相永磁式同步電動機的相電流、機械角位置及機械轉速,配合轉子旋轉座標軸轉換,將電動機回授的相電流轉換為交直軸電流,以完成轉速及電流閉迴路控制系統及位置閉迴路控制系統,以提升驅動系統的性能。在位置閉迴路控制方面,位置控制器採用可調式比例增益型調節器,可縮小位置穩態誤差,並具有抵抗慣量、穩態抗干擾及可控制不平衡負載結構的性能,以提高位置控制系統的實用性。
    本文採用Matlab/Simulink軟體模擬雙組三相變頻器及雙組三相永磁式同步電動機的轉速及電流閉迴路控制與位置閉迴路控制,以驗證本文控制策略的可行性。驅動系統的控制核心採用32位元數位信號處理器編號TMS320F28075,控制策略皆以軟體實現,具可塑性,可提高可靠度。轉速及電流閉迴路控制策略的實測,轉速為2000rpm且電磁轉矩約為13.7N-m的條件下,雙組三相繞組的相電流峰值約為110A,系統整體效率為94.1%,可知雙組三相變頻器具有分散電流及散熱能功能。位置閉迴路控制策略的實測,與固定式比例增益型調節器相比,可調式比例增益型調節器使位置穩態誤差由10度降低至1度。穩態抗干擾的實測,穩態時,當有外界干擾量施加在電動機上,電動機將產生相對的電磁轉矩抵抗外力,以縮小位置誤差。不平衡負載結構的實測,不平衡機械負載於不同角度造成的負載轉矩,而電動機將產生相對的交軸保持電流,以抵抗不平衡負載造成的負載轉矩。


    This paper aims to develop the position close loop control system driver by double-three-phase permanent-magnet synchronous motor (PMSM). The PMSM is 12-slot stator with double-three-phase winding and 10-pole rotor structure. The driver power circuit is adopted double-three-phase inverter to disperse current and heat, and is controlled by voltage space vector pulse width modulation to improve the voltage utilization of the dc-link. Use the rotor rotation coordinate axis conversion to convert the feedback of three phase current into q-d current axis. The drive system is adopted a 32-bit digital signal processor - TMS320F28075 as control core. All control strategies are implemented by software for flexible and reliability and adopted the Matlab/Simulink software to do the simulation to verify the feasibility of this control strategy.
    The feedback device of the system uses current sensors and a resolver to feedback the three phases current, mechanical angular position and mechanical speed of the PMSM. Since the speed and current close loop control system and the position close loop control functions, it improves the performance of the drive system. The measured value of the speed and current close loop control strategy is under the 2000 rpm speed and the 13.7 N-m electromagnetic torque condition. The peak value of the phase currents of the winding is 110A, and the overall efficiency of the system is 94.1%.
    When the external interference applied to the motor in the steady state, the motor generates relative electromagnetic torque to resist the external force and reduce the position error. The motor will generate a relative q axis holding current to resist the torque of load caused by the unbalanced load at different angles. The measured value of the position close loop control strategy is compared with the fixed proportional gain regulator, and the adjustable proportional gain regulator reduces the position steady-state error from 10 degrees to 1 degree. The position controller is adopted an adjustable proportional gain regulator in the position close loop control. That can reduce the steady-state error of position, resisting inertia, steady-state anti-interference and unbalanced-load-control-structure to improve the practicability of the position control system.

    摘要 I Abstract II 誌謝 III 目錄 IV 符號索引 VII 圖表索引 XVII 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 2 1-2-1 雙組三相永磁式同步電動機方面 2 1-2-2 磁場導向控制方面 2 1-2-3 位置閉迴路控制策略方面 3 1-3 系統架構及特色 4 1-4 本文大綱 6 第二章 雙組三相永磁式同步電動機的數學模式及參數量測 7 2-1 前言 7 2-2 轉子旋轉座標軸轉換及雙組三相永磁式同步電動機的負載模式 7 2-2-1 abc組與qd0軸的座標軸轉換及反轉換 8 2-2-2 xyz組與qd0軸的座標軸轉換及反轉換 9 2-2-3 abc組、xyz組與qd0座標軸轉換及反轉換的實現 11 2-3 馬達繞組的接線規劃及電路參數的量測 12 2-3-1 雙組三相永磁同步電動機繞組的接線規劃 12 2-3-2 雙組三相永磁式同步電動機的等效電阻及電感量測 13 2-3-3 雙組三相永磁式同步電動機等效至定子側的轉子磁通鏈量測 14 2-4 轉子磁場角位置的量測及校正 19 2-5 結語 20 第三章 雙組三相永磁式同步電動機的轉速及電流閉迴路控制系統 21 3-1 前言 21 3-2 雙組三相永磁式同步電動機的轉速及電流閉迴路控制策略 21 3-2-1 交直軸電流閉迴路控制 21 3-2-2 轉速閉迴路控制 24 3-3 雙組三相永磁式同步電動機的轉速及電流閉迴路控制策略的模擬 26 3-4 軟體程式的流程說明 31 3-4-1 主程式流程規劃 31 3-4-2 轉速及電流閉迴路控制系統的程式流程規劃 33 3-5 實測結果 35 3-6 結語 40 第四章 雙組三相永磁式同步電動機的位置閉迴路控制系統 41 4-1 前言 41 4-2 雙組三相永磁式同步電動機的位置閉迴路控制策略 41 4-3 雙組三相永磁式同步電動機的位置閉迴路控制策略的模擬 45 4-4 位置閉迴路控制系統的程式流程規劃 49 4-5 實測結果 51 4-5-1 固定式及可調式的比例增益型調節器的實測結果 52 4-5-2 穩態抗干擾的實測結果 56 4-5-3 不平衡機械負載的實測結果 58 4-6 結語 61 第五章 結論與建議 62 5-1 結論 62 5-2 建議 63 參考文獻 64 附錄A 電壓空間向量脈波寬度調變 69 A-1 abc組三相變頻器的PWM控制 70 A-2 xyz組三相變頻器的PWM控制 72 附錄B 系統硬體電路架構 74 B-1 數位介面核心電路 74 B-2 電流回授電路 78 B-3 閘極驅動電路及功率級電路 79 B-4 角位置及角位置回授電路 80

    [1] M. Barcaro, A. Faggion, L. Sgarbossa, N. Bianchi, S. Bolognani, "Performance evaluation of an integrated starter alternator using an interior permanent magnet machine," Published in IET Electric Power Applications,2009.

    [2] 蕭鈞毓,’’六相及雙三相繞組永磁式同步電機之分析及設計’’,國立臺灣科技大學電機研究所碩士論文,民國九十五年。

    [3] M. Barcaro, N. Bianchi and F. Magnussen, "Analysis and tests of a dual three-phase 12-slot 10-pole permanent magnet motor," IEEE Energy Conversion Congress and Exposition, pp. 3587-3594, 2009.

    [4] J. Karttunen, S. Kallio, P. Peltoniemi, P. Silventoinen and O. Pyrhönen, "Dual three-phase permanent magnet synchronous machine supplied by two independent voltage source inverters," International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, pp. 741-747, 2012.

    [5] Z. Ziqiang, W. Shensheng, S. Bo, Y. Luocheng, X. Peilin, R. Yuan, "Advances in dual-Three-phase permanent magnet synchronous machines and control techniques," Energies, 14, 7508, 2021.

    [6] L. Parsa, "On advantages of multi-phase machines," 31st Annual Conference of IEEE Industrial Electronics Society, IECON, pp. 6-10, 2005.

    [7] M. Rezal, D Ishak, "Performance evaluation of multi-phase permanent magnet synchronous motor based on different winding configurations and magnetization patterns," International Journal of Power Electronics and Drive System (IJPEDS), 2019.

    [8] Y. Demir and M. Aydin, "A novel dual three-phase permanent magnet synchronous motor with asymmetric stator winding," IEEE Transactions on Magnetics, vol. 52, no. 7, pp. 1-5, July, Art no. 8105005, 2016.

    [9] Y. Demir and M. Aydin, "Design, analysis and validation of a dual three-phase 72-slot, 12-pole permanent magnet synchronous motor," XXII International Conference on Electrical Machines (ICEM), pp. 1598-1603, 2016.

    [10] D. Casadei, G. Serra, A. Tani and L. Zarri, "General inverter modulation strategy for multi-phase motor drives," 2007 IEEE International Symposium on Industrial Electronics, pp. 1131-1137, 2007.

    [11] Y. Ohto, T. Noguchi and T. Sasaya, "Space vector modulation of dual inverter with battery and capacitor across DC buses," IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS), pp. 1,172-1,177, 2017.

    [12] Z. Yang, T. Niu and Q. Gao, "High switching frequency control scheme for dual- three-phase PMSM and simulation analysis," IEEE Transportation Electrification Conference, Asia-Pacific (ITEC Asia-Pacific), pp. 1-6, 2017.

    [13] A. Samar, P. Saedin, A. I. Tajudin and N. Adni, "The implementation of Field Oriented Control for PMSM drive based on TMS320F2808 DSP controller," IEEE International Conference on Control System, Computing and Engineering, pp. 612-616, 2012.

    [14] F. Yusivar, N. Hidayat, R. Gunawan and A. Halim, "Implementation of field oriented control for permanent magnet synchronous motor," International Conference on Electrical Engineering and Computer Science (ICEECS), pp. 359-362, 2014.

    [15] S. s. patel and s. rathore, "Performance Analysis of Control strategy of Permanent Magnet Synchronus Motor drive," International conference on smart systems and inventive technology (ICSSIT), pp. 304-310, 2018.

    [16] M. Abassi, A. Khlaief, O. Saadaoui, A. Chaari and M. Boussak, "Performance analysis of FOC and DTC for PMSM drives using SVPWM technique," 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp. 228-233, 2015.

    [17] L. Yu, C. Wang, H. Shi, R. Xin and L. Wang, "Simulation of PMSM field-oriented control based on SVPWM," 29th Chinese Control And Decision Conference (CCDC), pp. 7407-7411, 2017.

    [18] 黃仲欽,電機控制教學講義,民國一百零九年。

    [19] J. Karttunen, S. Kallio, P. Peltoniemi, P. Silventoinen and O. Pyrhönen, "Dual three-phase permanent magnet synchronous machine supplied by two independent voltage source inverters," International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, pp. 741-747, 2012.

    [20] M. Wu and R. Zhao, "Method analysis and comparison of SVPWM and SPWM," Proceedings of the 29th Chinese Control Conference, pp. 3184-3187. 2010.

    [21] M. Khalid, A. Mohan and B. A. C, "Performance analysis of vector controlled PMSM drive modulated with Sinusoidal PWM and space vector PWM," IEEE International Power and Renewable Energy Conference, pp. 1-6, 2020.

    [22] K. Vinoth Kumar, Prawin Angel Michael, Joseph P. John and Dr. S. Suresh Kumar, " Simulation and comparison of SPWM and SVPWM control for three phase inverter," ARPN Journal of Engineering and Applied Sciences, vol. 5, no. 7, 2010.

    [23] D. Hadiouche, L. Baghli and A. Rezzoug, "Space-vector PWM techniques for dual three-phase AC machine: analysis, performance evaluation, and DSP implementation," IEEE Transactions on Industry Applications, vol. 42, no. 4, pp. 1112-1122, July-Aug. 2006.

    [24] 劉榮華,"永磁式線性同步電動機位置控制系統之研製",國立台 灣科技大學電機研究所碩士論文,民國九十三年。

    [25] 胡敬暉,"無轉角感測器之永磁交流電機位置控制系統研製",國立台北科技大學電機研究所碩士論文,民國一百零五年。

    [26] Zhang Nianzu, Zhu Ruhui and Fan Maoji, "Fuzzy control used in robotic arm position control," Proceedings of IEEE 3rd International Fuzzy Systems Conference, pp. 1484-1489 vol.3, 1994.

    [27] R. Cordero, W. I. Suemitsu, J. O. P. Pinto, A. M. Soares and R. A. Capitanio, "Position control of PMSM based on augmented fuzzy takagi-Sugeno SISO models and LMIs," IECON - 38th Annual Conference on IEEE Industrial Electronics Society, pp. 1952-1957, 2012.

    [28] Baoren Wang, Chengrui Zhang and Lei Jia, "Study of fuzzy logic based adaptive position control used for AC servo system," 6th World Congress on Intelligent Control and Automation, pp. 8132-8135, 2006.

    [29] S. yanxia, W. dinghui and J. zhicheng, "Model reference fuzzy adaptive control of permanent magnet synchronous motor," Chinese Control Conference, pp. 1522-1527, 2006.

    [30] S. Liu and L. Ding, "Application of adaptive fuzzy sliding mode controller in PMSM servo system," International Conference on Computing, Control and Industrial Engineering, pp. 95-98, 2010.

    [31] Xinkai Wu and Hongpei Xu, "Research on the state equation of the position loop and speed loop in the PMSM cascade sliding mode control," International Conference on Electric Information and Control Engineering, pp. 3553-3555, 2011.

    [32] X. Xu, H. Yu, X. Liu and B. Zhao, "Robot joint position control based on sliding mode and the port-controlled hamiltonian method," Chinese Control And Decision Conference (CCDC), pp. 4392-4397, 2018.

    [33] D. Chen, H. Du and X. Jin, "Position tracking control for permanent magnet synchronous motor based on integral high-order terminal sliding mode control," 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 234-239, 2017.

    [34] 劉佳恩,"低電流諧波之三相永磁式同步電動機位置控制系統研製",國立臺灣科技大學電機研究所碩士論文,民國一百零四年。

    無法下載圖示 全文公開日期 2032/07/13 (校內網路)
    全文公開日期 2032/07/13 (校外網路)
    全文公開日期 2027/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE