簡易檢索 / 詳目顯示

研究生: 林文彬
Wen-bin Lin
論文名稱: 三臂型降壓直流-直流功率轉換器於可變直流鏈電壓之永磁式同步電動機驅動器應用
Application of Three-Leg Buck DC-DC Power Converter to Permanent-Magnet Synchronous Motor Drives with Adjustable DC-Link Voltage
指導教授: 黃仲欽
Jonq-chin Hwang
口試委員: 葉勝年
Sheng-nian Yeh,
蕭弘清
Horng-ching Hsiao
王順源
Shun-Yuan Wang
張松助
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 永磁式同步電動機電壓空間向量脈波寬度調變
外文關鍵詞: voltage space vector pulse-width modulation, permanent-magnet synchronous motors
相關次數: 點閱:342下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製三臂型降壓直流-直流功率轉換器,並將此轉換器用於可變直流鏈永磁式同步電動機驅動之整合控制。在永磁式同步電動機驅動系統方面,本文採用電壓空間向量脈波寬度調變,並配合永磁式同步電動機之轉子同步旋轉座標系統,藉由電流及轉子磁場角位置回授方式,完成轉速及電流閉迴路控制,以提高啟動及加載的動態性能。
    本文採用三臂型降壓直流-直流功率轉換器之電壓及電流閉迴路,並且使用交錯式(interleave)脈波寬度調變,控制直流鏈電壓,使直流鏈電壓隨轉速作比例調整。當三相永磁式同步電動機在高速時採用高直流鏈電壓,低速時採用低直流鏈電壓控制。本文之可調直流鏈電壓及電流閉迴路控制可降低直流鏈電壓漣波,減少啟動及運轉之電流諧波含量,降低脈動轉矩。
    本文採用以高性能數位信號處理器TMS320F2812,完成三臂型之交錯式脈波寬度調變控制及電壓與電流閉迴路控制策略、永磁式同步電動機之轉速與電流閉迴路,減少了硬體電路,縮小控制電路體積。本文已製作900W永磁式同步電動機調速系統,其轉速範圍為500 2000 rpm。當使用低電壓對應低轉速時,電流總諧波失真率由原本11%改善至4.3%。文中亦提出詳細的系統實測資料以驗證此控制之可行性。


    This thesis is focused on the application of three-leg buck dc-dc power converter for the adjustable dc-link voltage. As to the drive of permanent-magnet synchronous motors, system control is conducted by voltage space vector pulse-width modulation (VSVPWM). Current and rotor-flux-orientation under synchronous frame are introduced to promote the dynamic performances of starting and load variation.
    Voltage and current closed-loop control with three-leg buck dc-dc power converter is achieved. Interleaved pulse-width modulation is used to control dc-link voltage. The proportional control of the peak electromotive-force versus speed is proposed for three-phase permanent-magnet synchronous motors. Low and high speed controls are conducted by using low and high dc-link voltages, respectively. The proposed adjustable voltage of dc link and current closed-loop strategies can thus reduce voltage ripple and current harmonics.
    A high performance digital signal processor, TMS320F2812, is used for interleaved pulse-width modulation, voltage and current closed-loop as well as three-leg dc-dc power converter. This reduction of hardware components results in cost lowing and reliability enhancement. A prototype of 900W permanent-magnet synchronous motor is built. The speed range of the motor is 500 2000 rpm. Experimental results indicate that the total harmonic distortion of current is reduced from 11% to 4.3% for 6.2N-m.This justifies the feasibility of the proposed system.

    中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 符號索引 VI 圖表索引 X 第一章 緒論 1 1-1 動機及目的 1 1-2 文獻探討 2 1-3 系統架構及特色 2 1-4 本文大綱 4 第二章 三臂型直流-直流功率轉換器之模式及控制 5 2-1 前言 5 2-2 三臂型直流-直流功率轉換器之分析 5 2-3 三臂型直流-直流功率轉換器之控制 9 2-4 結語 13 第三章 永磁式同步電動機之模式及驅動系統 14 3-1 前言 14 3-2 三相永磁式同步電動機之模式及控制 14 3-3 三相變頻器及脈波寬度調變控制 19 3-4 前後級直流鏈電壓與轉速之整合控制 26 3-5 結語 28 第四章 實體製作及實測 29 4-1 前言 29 4-2 硬體電路 29 4-2-1 電壓回授電路 30 4-2-2 電流回授電路 32 4-2-3 零電壓偵測電路 34 4-2-4 功率電晶體模組 35 4-3 軟體規劃 37 4-3-1 三臂型直流-直流功率轉換器之控制程式規劃 37 4-3-2 同步電動機之轉速及電流閉回路控控制程式規劃 40 4-4 實測結果 44 4-5 結語 59 第五章 結論與建議 59 5-1 結論 59 5-2 建議 60 參考文獻 62 附錄A永磁式同步電動機規格 66 附錄B三相直流-直流功率轉換器規格 67 附錄C三相直流-交流功率轉換器規格 68 附錄D系統控制器參數值 69 作者簡介 70

    [1] J. Kikuchi, M. D. Manjrekar and T. A. Lipo, “Complementary half controlled three phase PWM boost rectifier for multi-DC-link applications,” IEEE Applied Power Electronics Conference, vol. 1, pp. 494-500, Feb.2000.
    [2] P. Barbosa, F. Canales, J. C. Crebier and F. C. Lee, “Interleaved three-phase boost rectifiers operated in the discontinuous conduction mode: analysis, design considerations and experimentation,” IEEE Transactions on Power Electronics, vol. 16, pp. 724-734, Sept. 2001.
    [3] J. C. Salmon, “3-phase PWM boost rectifier circuit topologies using 2-level and 3-level asymmetrical half-bridges,” IEEE Applied Power Electronic Conference, vol. 2, pp. 842-848, March 1995.
    [4] J. Kikuchi. and T. A. Lipo, “Three-phase PWM boost-buck rectifiers with power-regenerating capability,” IEEE Transactions on Industry Applications, vol.38, pp. 1361-1369, Sept./Oct. 2002.
    [5] J. Kikuchi and T. A. Lipo, “Three phase PWM boost-buck rectifiers with power regenerating capability,” Conference Record of the Industry Applications Annual Meeting, vol.1, pp. 308-315, 2001.
    [6] T. Grossen, E. Menzel and J. H. R Enslin, “Three-phase buck active rectifier with power factor correction and low EMI,” IEEE Proceedings- Electric Power Applications, vol.145. pp. 591-596, Nov. 1999.
    [7] J. Rabkowski, M. Nowak, J. Matulka and R. Barlik, “Output currents equalization for parallel connected three-phase PWM buck rectifiers,” IEEE Power Electronics Specialists Conference, vol. 4, pp. 2810-2816, 2004.
    [8] 余景州,“數位控制之多臂式直流-直流功率轉換器於燃料電池供電系統之應用"國立台灣科技大學電機研究所碩士論文,民國九十三年。
    [9] Q. Hu, H. Hu, Z. Lu and W. Yao, “A novel method for dead-time compensation based on SVPWM,” IEEE Applied Power Electronic Conference, vol. 3, pp. 1867-1870, March 2005.
    [10] Z. Keliang and W. Danwei, “Relationship between space-vector modulation and three-phase carrier-based pwm: a comprehensive analysis,” IEEE Transactions on Industry Electronics, vol. 49, pp. 186-196, 2002.
    [11] C. B. Jacobina, “Digital scalar pulse-width modulation: a simple approach to introduce nonsinusoidal modulation waveforms,” IEEE Transactions on Industry Applications, vol. 16, pp. 351-359, 2001.
    [12] H. V. Broeck, H. C. Skudelny and G. V. Stanke, “Analysis and realization of a pulse-width modulator based on voltage space vectors,” IEEE Transactions on Industry Applications, vol. 24, no. 1, pp. 142-149, 1998.
    [13] A. Bakhshai, G. Joos, J. Espinoza and H. Jin, “Fast space vector modulation based on a neurocomputing digital signal processor,” IEEE Applied Power Electronic Conference, vol. 2, pp. 872-878, 1997.
    [14] 劉昌煥,交流電機控制,東華書局,民國九十年。
    [15] 何世賓,“凸極式永磁式同步電動機之高效率及高速控制系統研制”,國立台灣科技大學電機研究所碩士論文,民國八十九年。
    [16] 林信宏,“電梯用永磁式同步電動機驅動器之研製",國立台灣科技大學電機研究所碩士論文,民國九十五年。
    [17] 邱森泰,“永磁同步電動機伺服驅動系統之控制器參數調整"國立台灣科技大學電機研究所碩士論文,民國九十一年。
    [18] F. Blaschke, “The principle of field orientation as applied to the new transvector closed loop control system for rotating field machines,” Siemens Review, vol. 34, pp. 217-220, 1972.
    [19] A. R. Prasad, P. D. Ziogas and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Transactions on Power Electronics, vol. 6, pp. 83-92, 1991
    [20] J. Chen, D. Maksimovic and R. Erickson, “Buck-boost pwm converters having two independently controlled switches,” IEEE Power Electronics Specialists Conference, vol.2, pp. 736-741, 2001.
    [21] T. Senjyu, T. Shimabukuro and K. Uezato, “Vector control of permanent magnet synchronous motors without position and speed sensors,” IEEE Power Electronics Specialists Conference, vol.2, pp. 759-765, June 1995.
    [22] B. Zhang and M. H. Pong, “Maximum torque control and vector control of permanent magnet synchronous motor,” International Conference on Power Electronics and Drive Systems, vol. 2, pp. 548 - 552, May 1997.
    [23] M. Konghirun and L. Xu, “A dq-axis current control technique for fast transient response in vector controlled drive of permanent magnet synchronous motor,” Power Electronics and Motion Control Conference, vol.3, pp. 1316-1320, Aug. 2004.
    [24] J. I. Toh, N. Nomura and H. Ohsawa, “A comparison between V/f control and position-sensorless vector control for the permanent magnet synchronous motor,” Proceedings of the Power Conversion Conference, vol. 3, pp. 1310-1315, April 2002.
    [25] J. M. Kim, S. J. Kang and S. K. Sul “Vector control of interior permanent magnet synchronous motor without a shaft sensor,” Proceedings of the Applied Power Electronics Conference, vol. 2, pp. 743-748, Feb.1997.
    [26] S. P. Das and A. K. Chattopadhyay, “Observer based stator flux oriented vector control of cycloconverter-fed synchronous motor drive,” Proceedings of the International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, vol. 1, pp. 236-242, Jan. 1996.
    [27] S. Vaez-Zadeh, “Torque compensation in permanent magnet synchronous motor drives for constant torque, varying flux operation,” IEEE Power Electronics Specialists Conference, vol. 3, pp. 1124-1129, June 2000.
    [28] S. Morimoto, M. Sanada and Y. Takeda, “Sinusoidal current drive system of permanent magnet synchronous motor with low resolution position sensor,” Conference Record of the Industry Applications Annual Meeting, vol. 1, pp. 9-14, Oct. 1996.
    [29] K. I. Saleh, O. A. Mohammed and M. A. Badr, “Field-oriented vector control of synchronous motors with additional field winding,” IEEE Transactions on Energy Conversion, vol. 19, pp. 95-101, March 2004.
    [30] Y. S. Kim, Y. K. Choi and J. H. Lee, “Speed-sensorless vector control for permanent-magnet synchronous motors based on instantaneous reactive power in the wide-speed region,” IEE Proceedings- Electric Power Applications, vol. 152, pp. 1343-1349, Sept. 2005.
    [31] TMS320x281x System Control and Interrupts Reference Guide, Texas Instruments Co., 2006
    [32] TL084 Application Note, Texas Instruments Co., 1995
    [33] HX25P Application Note, Lem Co.
    [34] PM30CSJ060 Application Note, Mitsubishi Co.,1998
    [35] HCPL4503 Technical Data, Hewlett Packard Co.
    [36] 74LS365 Application Note, Texas Instruments Co., 1998
    [37] QEP_THETA_DRV Application Note, Texas Instruments Co., 2005
    [38] AM26LS32AC Application Note, Motorola Co.1995

    QR CODE