簡易檢索 / 詳目顯示

研究生: 鄭義威
Yi-Wei Zheng
論文名稱: 無感測器三相永磁同步電動機驅控系統於風機濾網積塵監測之應用研究
Development of Sensorless Three-Phase Permanent Magnet Synchronous Motor Drive System for Dust Accumulation Monitoring in Fan Filter Unit
指導教授: 蕭弘清
Horng-Ching Hsiao
蕭鈞毓
Chun-Yu Hsiao
口試委員: 胡能忠
Neng-Chung Hu
謝秀明
Hsiu-Ming Hsieh
蕭弘清
Horng-Ching Hsiao
蕭鈞毓
Chun-Yu Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 風機濾網機組灰塵堵塞無感測器轉速及電流閉迴路控
外文關鍵詞: Fan Filter Unit, Dust Clogging, Sensor-less, Speed and Current Closed Loop Control
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出依電流變化量調整電動機轉速的方法,藉由長期監測統計及學理分析,歸納整合出風機濾網積塵量與電動機電流變化量的關係,設計一套濾網積塵監測與電動機轉速控制系統,裝置於風機濾網機組上,可持續經由監測電動機電流的變化量,判斷濾網積塵情狀,並調整風扇轉速,使其保持足夠的出風量,以維持生產線良好的空氣品質;改善目前精密產業界生產線上空氣清淨設備之風機濾網機組因灰塵堵塞濾網時,皆須透過人工量測風速下降量及調整電動機轉速的缺點,可節省大量的時間與不必要的人事成本。
    傳統三相永磁同步電動機必須使用霍爾感測器來偵測轉子位置,其包含增加成本、減少電動機壽命等缺點;故本研究以無感測器三相永磁同步電動機為研究重點,以符合企業降低生產維護成本的需求。
    本文設計一個無感測器永磁同步電動機之驅控系統,硬體架構以電機控制晶片(IMM101T-056M)與微控制器(PIC16F19176)為主要控制核心,搭配周邊零件,如燈號、按鍵等;而電動機的控制策略為無感測器轉速及電流閉迴路控制,完成整套控制介面與系統。實測結果驗證,本文所提出依據電流變化量來調整電動機轉速的方法,以及轉速及電流閉迴路的控制策略是可行且可靠的。實測結果驗證,因積塵而須調速控制有效電流門檻之程式計算值與實測值相符,誤差百分比僅-1.79%。由此證明,本文提出之控制系統應用於生產線上數量龐大的風機濾網機組,具有高度的實用性及經濟性。


    At present, when the fan filter unit is clogged by dust, it is necessary to manually measure the decrease amount in wind speed and then raise the motor speed to ensure sufficient airflow. The thesis proposed a control strategy to adjust the motor speed according to the current change. Through continuously monitoring the dust and current change statistically, the relationship between the dust accumulation of the fan filter and the motor current can be established. We design a filter dust monitoring and motor speed control system installed in the fan filter unit, which can continuously monitor the change of the motor current. Thereby knowing the dust condition of the fan filter, the control system will adjust the fan speed to provide sufficient airflow output to keep well air quality in the production line. The control strategy proposed in this research may save a lot of labor jobs, time and unnecessary personnel costs.
    The traditional three-phase permanent magnet synchronous motor must equip Hall sensors to detect the rotor position, which caused the cost rise and shorten motor lifetime. That is why the research explored a practical control scheme without sensor for the three-phase permanent magnet synchronous motor.
    This thesis designs a sensor-less permanent magnet synchronous motor drive control system. The hardware is based on the motor control chip (IMM101T-056M) and the microcontroller (PIC16F19176) as the main control component, deployed with peripheral hardware such as lights, buttons, etc. The control strategy is based on sensor-less speed and current closed-loop control to complete the entire control interface and system. The measured results verify that the adjusting the motor speed according to the amount of current change and the closed-loop control strategy of speed and current are feasible and reliable for dust status evaluation. The calculated value of the effective current threshold for speed regulation is consistent with the actual field measurement value. The relative error is only -1.79%, which is within the acceptable range. The control system proposed here is useful and suitable for enormous amount of fan filter units in the production line, which is highly practical and economical.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號索引 X 第一章 緒論 1 1.1 研究動機 1 1.2 相關文獻回顧 2 1.3 研究流程與章節架構 7 第二章 三相永磁同步電動機之結構及數學模型 9 2.1 前言 9 2.2 三相永磁同步電動機結構與特性 9 2.3 三相永磁同步電動機數學模型 14 2.4 本章結語 26 第三章 三相永磁同步電動機驅控方法與控制器設計 27 3.1 前言 27 3.2 IMM101T-056M電機控制晶片規格及控制策略 27 3.2.1 IMM101T-056M電機控制晶片之規格 27 3.2.2 IMM101T-056M電機控制晶片之控制方塊 28 3.3 三相變頻器原理 29 3.4 電壓空間向量脈波寬度調變 30 3.4.1 三相變頻器之電壓開關模式 30 3.4.2 電壓空間向量脈波寬度調變之開關責任週期計算 32 3.5 無感測器三相永磁同步電動機之控制器設計 37 3.5.1 定電流啟動法 38 3.5.2 轉速及電流閉迴路控制器 40 3.6 本章結語 44 第四章 風機濾網機組之驅控系統研製 45 4.1 前言 45 4.2 電動機電流與出風口風速之關係 45 4.3 風機濾網機組驅控系統之硬體架構 47 4.3.1 微控制器PIC16F19176規格 48 4.3.2 無感測器三相永磁同步電動機規格 49 4.3.3 風機濾網機組 57 4.3.4 通訊介面與電動機驅控整合板說明 58 4.4 風機濾網機組驅控系統之軟體程式設計 59 4.4.1 IMM101T-056M程式設計 60 4.4.2 PIC16F19176程式設計 61 4.5 本章結語 65 第五章 控制策略可行性模擬及功能實測 66 5.1 前言 66 5.2 控制策略可行性模擬及量測驗證 66 5.2.1 轉速及電流閉迴路控制策略模擬程式之建立 66 5.2.2 模擬結果與實測驗證 80 5.3 依電流變化量調整電動機轉速功能之實測 82 5.3.1 實測方法及流程說明 82 5.3.2 量測數據分析與功能驗證 84 5.4 本章結語 92 第六章 結論與未來研究建議 93 6.1 結論 93 6.2 未來研究建議 94 參考文獻 95

    [1]顏耀東,田口方法應用於永磁無刷直流馬達之最佳化設計與實現,國立臺灣科技大學電機工程系,碩士論文,2015年7月。
    [2]簡于凱,直驅式電動手工具之馬達優化設計,國立臺灣科技大學電機工程系,碩士論文,2019年7月。
    [3]黃筠涵,應用田口實驗法於小容量電動機設計及效益評估研究,國立臺灣科技大學電機工程系,碩士論文,2016年7月。
    [4]Z. KHAN. (2015). Highly dynamic brushless DC motors from maxon: compact yet powerful. Available: https://reurl.cc/a6k73.
    [5]https://reurl.cc/ardEqD,外轉子與內轉子馬達的區別,2017年。
    [6]黃勁嘉,小容量直流無刷電動機的驅動控制電路設計,國立臺灣科技大學電機工程系,碩士論文,2018年1月。
    [7]鄧有容,無轉軸偵測元件永磁式同步電動機驅動系統研製,國立臺灣科技大學電機工程系,碩士論文,2007年7月。
    [8]Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Analysis of Electric Machinery and Drive Systems, Wiley-IEEE Press, 2002.
    [9]S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, "Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame," IEEE Transactions on Industry Applications, vol. 38, no. 4, pp. 1054-1061, 2002.
    [10]https://www.infineon.com/cms/cn/product/power/motor-control-ics/digital-motor-controller-imotion/imm101t-056m/,IMM101T-056產品介紹。
    [11]iMOTION™ IMM101T/IMM102T Smart IPM for motor control, Infineon Technologies, 2019.
    [12]iMOTION™ Motion Control Engine Software Reference Manual, Infineon Technologies, 2019.
    [13]N. Mohan, T. M. Undeland, W. P. Robbins, Power electronic: converters, application and design, John Wiley and Sons, 3rd edition.
    [14]S. Hannan, S. Aslam and M. Ghayur, "Design and real-time implementation of SPWM based inverter," 2018 International Conference on Engineering and Emerging Technologies (ICEET), pp. 1-6, 2018.
    [15]Simulation and Comparison of SPWM and SVPWM Control for Two Level Inverter, 2017. Available: https://reurl.cc/Q33b29
    [16]S. Pradeepa, S. Kumar P. and G. Prakash, "Adoption of SVPWM technique to CSI and VSI," 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1-6, 2018.
    [17]S. Singh, A. N. Tiwari, "Analysis and simulation of vector controlled PMSM drive using SVPWM inverter," 2017 2nd International Conference for Convergence in Technology (I2CT), pp. 709-714, 2017.
    [18]Y. Huang, Y. Xu, Y. Li, G. Yang and J. Zou, "PWM frequency voltage noise cancelation in three-phase VSI using the novel SVPWM strategy," IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8596-8606, Oct. 2018.
    [19]Jia YingYing, Wang XuDong, Mao LiangLiang, Yang ShuCai and Zhang HaiXing, "Application and simulation of SVPWM in three phase inverter," Proceedings of 2011 6th International Forum on Strategic Technology, pp. 541-544, 2011.
    [20]K. Sakamoto, Y. Iwaji, T. Endo and T. Takakura, "Position and speed sensorless control for PMSM drive using direct position error estimation," IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243), vol. 3, pp. 1680-1685, 2001.
    [21]黃暐舜,「以數位座標旋轉演算法為主之直流無刷馬達弦波電流無感測控制」。碩士論文,國立交通大學電機與控制工程系所,2009。
    [22]M. J. Corley, R. D. Lorenz, "Rotor position and velocity estimation for a salient-pole permanent magnet synchronous machine at standstill and high speeds," in IEEE Transactions on Industry Applications, vol. 34, no. 4, pp. 784-789, July-Aug. 1998.
    [23]Y. Jeong, R. D. Lorenz, T. M. Jahns and S. Sul, "Initial rotor position estimation of an interior permanent magnet synchronous machine using carrier-frequency injection methods," IEEE International Electric Machines and Drives Conference, vol. 2, pp. 1218-1223, 2003.
    [24]Z. Zheng, M. Fadel and Y. Li, "High performance PMSM sensorless control with load torque observation," EUROCON 2007 - The International Conference on "Computer as a Tool", pp. 1851-1855, 2007.
    [25]V. Aishwarya, B. Jayanand, "Estimation and control of sensorless brushless DC motor drive using Extended Kalman Filter," 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1-7, 2016.
    [26]Ke Zhao, Hanying Gao, A. Esmaeli and Li Sun, "Study on a novel control system of PMSM," 2006 6th World Congress on Intelligent Control and Automation, pp. 8231-8235, 2006.
    [27]A. Kamalaselvan, S. L. Prakash, "Modeling simulation and analysis of closed loop speed control of PMSM drive system," 2014 International Conference on Circuits, Power and Computing Technologies (ICCPCT), pp. 692-697, 2014.
    [28]The Engineering Toolbox, Power consumption and typical efficiencies of fans. Available: https://reurl.cc/r88RK4
    [29]https://reurl.cc/q88NYN,PIC16F19176產品介紹。
    [30]黃勝良、吳秀錦,普通物理實驗課本,清華大學,民國九十四年。
    [31]C. Y. Wu, M. C. Tasi and S. H. Mao, "Characteristics measurement of direct-drive brushless DC motors without using dynamometers," 2009 International Conference on Electrical Machines and Systems, Tokyo, pp. 1-6, 2009.

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE