簡易檢索 / 詳目顯示

研究生: 江立翔
Li-Hsiang Chiang
論文名稱: 基於無轉子角位置感測器之衝擊式直流無刷電動手工具驅動策略研究
Research of The Drive Strategy for Impact Power Tools Based on BLDC Sensorless Scheme
指導教授: 蕭鈞毓
Chun-Yu Hsiao
口試委員: 王順源
Shun-Yuan Wang
辜志承
Jyh-Cherng Gu
蕭鈞毓
Chun-Yu Hsiao
蕭弘清
Horng-Ching Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 155
中文關鍵詞: 衝擊式電動手工具無感測器控制電流閉迴路控制電流回授三相永磁式直流無刷電動機
外文關鍵詞: Impact Power Tools, Current Closed Loop Control, Current Sensor Feedback, BLDC
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 衝擊式電動手工具因應直流無刷電動機之發明,除可有效延長使用壽命、免除傳統直流電機因電刷耗盡衍生之額外維修需求外,功率密度高及安裝轉子角位置感測器即可得知轉子角位置更是其優點,然而霍爾感測器對運作環境之敏感性高(不耐高溫、強磁)、編碼器價格昂貴,不符製造成本等限制,故本論文提出應用於衝擊式電動手工具之無感測直流無刷電機控制策略,可免除安裝轉子角位置感測器,克服無感測控制策略抗非線性負載變動能力低落之問題,提升整體控制策略強健度,且可降低生產成本。
    本研究旨在提出一套應用於三相永磁式直流無刷馬達之無感測器控制策略,可應用於衝擊式直流無刷電動手工具之控制架構。本論文提出之無感測器控制方法,可相容於表面黏貼磁鐵型(surface permanent magnet, SPM)與內藏磁鐵型(interior permanent magnet, IPM)兩種轉子磁鐵安裝形式之永磁直流無刷電動機,且可充分發揚無感測控制策略節省零件成本、操作環境相容度高之特性。控制架構方面採用端電壓比較法估測反電動勢相位,進而推算轉子角位置資訊,利用三組比較器將各相電壓交叉運算,即可生成各相差120度電機角且與反電動勢同相位之估測訊號,且可應用於各型式直流無刷電動機,不受轉子磁鐵安裝型式影響。經實測可取代原有霍爾感測器回授之位置訊號;同時使用電流閉迴路架構計算所需電壓命令,實測0.5 A電流命令下命令值與實際電流值誤差百分比為4.4%,1 A電流命令下誤差百分比為4%,可正確控制電流跟蹤於所下達的命令值。同時亦測得衝擊式手工具機槌擊鎖付功能可於2 A電流命令以上正確啟動,控制效果符合預期目標。


    In response to the invention of the brushless DC motor (BLDC), the impact power tools can effectively extend the service life and eliminate the need for additional maintenance due to brushes exchange. However, due to the high sensitivity of the Hall sensor to the operating environment, prone to failure in high temperature and strong magnetic field environments. The sensorless brushless DC motor control strategy in this research eliminates the need to install a rotor angle position sensor, and overcomes the problem of the fluctuating mechanical load, improves the robustness of the control strategy, and makes the impact electric hand tools work in more extreme operating fields, and can reduce production costs.
    The purpose of the thesis is to design and implement a sensorless control strategy to a three-phase permanent magnet brushless DC motor, which can be applied to impact electric hand tools. The sensorless control method proposed in this research is compatible with the permanent magnet brushless DC motors of two rotor magnet installation forms: surface permanent magnet (SPM) and interior permanent magnet (IPM). And it can fully promote the sensorless control strategy to reduce the cost of components, and high operating environment compatibility. The sensorless control strategy adopts the terminal voltage comparison method, use the comparators to compare the voltages of each phase, and generate an estimated signal in phase with the back-EMF. This method can be applied to various types of brushless DC motors, regardless of the rotor magnet installation type. The actual measurement results show that it can replace the position signal returned by Hall sensor; And the current closed-loop control strategy is used to calculate the voltage command for sensorless BLDC. The error percentage between the command value and the actual current value under 0.5 A current command is 4.4%, the error percentage under 1 A current command is 4%, which can correctly control the current to track the command value. At the same time, it is also measured that the hammer strike function of the impact power tools can be correctly activated above the 2 A current command, and the control effect is in line with the expected goal.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XV 符號索引 XVI 第1章 緒論 1 1.1 研究動機 1 1.2 相關文獻回顧 5 1.3 研究流程與章節架構 11 第2章 三相永磁直流無刷電動機結構及控制策略 14 2.1 前言 14 2.2 三相永磁直流無刷電動機結構與特性 14 2.2.1 依定、轉子配置方式分類 16 2.2.2 依轉子磁鐵安裝形式分類 17 2.2.3 依定子繞組接線形式分類 19 2.3 三相永磁直流無刷電動機數學模型 21 2.4 三相變頻器原理 25 2.5 120° 六步方波控制策略 26 2.6 本章結語 32 第3章 三相直流無刷無感測器控制策略設計 33 3.1 前言 33 3.2 使用感測器轉子角位置估測法 33 3.3 無感測器轉子角位置估測法 35 3.3.1 過零交越點檢測法 36 3.3.2 端電壓比較檢測法 38 3.4 無感測器轉子角位置估測法可行性模擬驗證 49 3.4.1 無感測比較運算電路模擬架構 49 3.4.2 無感測比較運算電路模擬結果 51 3.5 無感測器控制初始啟動策略 56 3.6 電流閉迴路控制策略 58 3.6.1 電流回授方法 58 3.6.2 電流閉迴路控制理論說明 59 3.6.3 電流閉迴路控制理論軟體模擬驗證 63 3.7 本章結語 69 第4章 實驗軟硬體架構 71 4.1 前言 71 4.2 數位訊號處理器規格選定 71 4.3 三相逆變器規格選定 72 4.4 無感測端電壓比較運算電路實作 74 4.4.1 相電壓採集電路實作 74 4.4.2 比較運算電路實作 75 4.4.3 史密特閾值觸發電路 76 4.4.4 無感測比較電路印刷實作 80 4.5 電流感測器 82 4.6 控制策略程式流程 86 4.6.1 主程式 87 4.6.2 中斷副程式 88 4.7 本章結語 96 第5章 實驗結果 97 5.1 相電壓波形與相電壓採集電路輸出波形模擬與實測驗證 97 5.2 無感測換相訊號估測方法模擬與實測驗證 102 5.3 無感測換相估測訊號與實際換相訊號模擬與實測驗證 106 5.4 電流命令值與實際電流值追蹤情形 112 5.5 實際加載鎖付時電流波形 120 5.6 本章結語 131 第6章 結論與未來研究建議 132 6.1 本研究結論 132 6.2 未來研究改善建議 133 參考文獻 134

    [1] Wonkee Donkee Tools. How does the impact tools work.
    Retrieved from https://www.wonkeedonkeetools.co.uk/cordless-impact-drivers/how-does-the-impact-function-work (May 15, 2021).
    [2] Popular Mechanics. (2016). Cutaway View Shows the Clever Innards That Make an Impact Driver Work. Retrieved from https://www.popularmechanics.com/home/tools/how-to/a19148/a-cutaway-view-of-how-an-impact-driver-works/ (March 11,2021).
    [3] C. Jain, P. Garg, and A. K. Jain, "Hall-effect sensor fault diagnosis, identification and remedial strategy in permanent magnet brushless DC drive," in IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES) , Chennai, India, 2018, pp. 1-5.
    [4] O. Aiello, P. Crovetti, and F. Fiori, "Investigation on the susceptibility of hall-effect current sensors to EMI," in 10th International Symposium on Electromagnetic Compatibility, York, UK, 2011, pp. 368-372.
    [5] T.-H. Kim and M. Ehsani, "Sensorless control of the BLDC motors from near-zero to high speeds," in IEEE transactions on power electronics, Miami Beach, FL, USA, 2004, vol. 19, no. 6, pp. 1635-1645.
    [6] J. P. Johnson, M. Ehsani, and Y. Guzelgunler, "Review of sensorless methods for brushless DC," in Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting, Phoenix, AZ, USA, 1999, vol. 1, pp. 143-150.
    [7] 簡于凱 (2019),直驅式電動手工具之馬達優化設計,台北市:國立臺灣科技大學。
    [8] 顏耀東 (2015),田口方法應用於永磁無刷直流馬達之最佳化設計與實現,台北市:國立臺灣科技大學。
    [9] 鄭竹軒 (2020),三相永磁同步波浪發電機設計與研製,台北市:國立臺灣科技大學。
    [10] 鄭義威 (2020),無感測器三相永磁同步電動機驅控系統於風機濾網積塵監測之應用研究,台北市:國立臺灣科技大學。
    [11] Nidec's Technical Capabilities. Motor Type Comparison Table. Retrieved from https://www.nidec.com/en/technology/capability/brushless/ (May 15, 2021).
    [12] Youtube. Brushed DC Motor Structure. (2016). Retrieved from https://www.youtube.com/watch?v=JU08mR_isaw. (May 15, 2021).
    [13] 蕭鈞毓、鄭義威、江立翔、陳冠榮 (2020),適應多功能電動手工具機用之馬達的最佳化設計與人工智慧驅控系統開發研究。台北市:中華民國科技部實務型研究計畫。
    [14] 黃勁嘉 (2018),小容量直流無刷電動機的驅動控制電路設計。台北市:國立臺灣科技大學。
    [15] 黃銘 (2010),電工機械-升學寶典,新北市:台科大圖書股份有限公司出版。
    [16] 王順忠、陳秋麟 (2013),電機機械基本原理,台北市:東華出版社。
    [17] 陳伯時 (2016),電力拖動自動控制系統,中華人民共和國:北京機械工業出版社。
    [18] 陳鶴斌 (2018),電動螺絲起子驅動器之研製,台北市:國立臺灣科技大學。
    [19] 鄧有容 (2017),無轉軸偵測元件永磁式同步電動機驅動系統研製,台北市:國立臺灣科技大學。
    [20] 黃仲欽 (2020),電機機械理論,台北市:國立台灣科技大學。
    [21] 王曉明 (2009),電動機的DSP控制-TI公司DSP應用,中華人民共和國:北京航空航天大學出版社。
    [22] 謝青紅、張筱荔 (2009),TMS320F2812DSP原理及其在運動控制系統中的應用,中華人民共和國:北京電子工業出版社。
    [23] 陳瑞麟 (2020),電機控制理論,台北市:國立台灣科技大學。
    [24] 路昌工業股份有限公司,BLDC with Hall Sensor簡易控制說明手冊。
    [25] P. Damodharan and K. Vasudevan, "Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference," in IEEE Transactions on Energy Conversion, vol. 25, no. 3, pp. 661-668, 2010.
    [26] B. Li, R. Ma, F. Fu, X. Jin, and W. Chen, "A new sensorless control method for brushless permanent magnet DC motors," in IEEE International Symposium on Sensorless Control for Electrical Drives and Predictive Control of Electrical Drives and Power Electronics (SLED/PRECEDE), pp. 1-7, 2013.
    [27] G.-J. Su and J. W. McKeever, "Low-cost sensorless control of brushless DC motors with improved speed range," in IEEE Transactions on power electronics, Dallas, TX, USA, 2004, vol. 19, no. 2, pp. 296-302.
    [28] T. Kim, C. Kim, and J. Lyou, "A new sensorless drive scheme for a BLDC motor based on the terminal voltage difference," in IECON 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, VIC, Australia, 2011, pp. 1710-1715.
    [29] T. Instruments, "Best practices for board layout of motor drivers".
    [30] T.-Y. Ho, C.-K. Huynh, Y.-J. Chen, and C.-F. Yan, "The design and implementation of a sensorless delta-connected brushless direct current motor drive for home appliances," in International Conference on Robotics, Control and Automation Engineering (RCAE), Chongqing, China, 2020, pp. 78-83.
    [31] C.-H. Chen and M.-Y. Cheng, "A new cost effective sensorless commutation method for brushless DC motors without phase shift circuit and neutral voltage," in IEEE Transactions on Power Electronics, 2007, vol. 22, no. 2, pp. 644-653.
    [32] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri, "Microcomputer control for sensorless brushless motor," in IEEE Transactions on Industry Applications, 1985, no. 3, pp. 595-601.
    [33] G. Liu, C. Cui, K. Wang, B. Han, and S. Zheng, "Sensorless control for high-speed brushless DC motor based on the line-to-line back EMF," in IEEE Transactions on Power Electronics, 2014, vol. 31, no. 7, pp. 4669-4683.
    [34] C.-H. Chen and M.-Y. Cheng, "A new sensorless control scheme for brushless DC motors without phase shift circuit," in International Conference on Power Electronics and Drives Systems, Kuala Lumpur, Malaysia, 2005, vol. 2, pp. 1084-1089.
    [35] H.-C. Chen, Y. Chang, S. Lin, C. Huang, Y. Chen, and K. Liang, "Sensorless control for DC inverter-fed compressors," in Nineteenth Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2004, vol. 2, pp. 1106-1110.
    [36] J. Shao, D. Nolan, M. Teissier, and D. Swanson, "A novel microcontroller-based sensorless brushless DC (BLDC) motor drive for automotive fuel pumps," in IEEE Transactions on Industry Applications, 2003, vol. 39, no. 6, pp. 1734-1740.
    [37] P. Damodharan, R. Sandeep, and K. Vasudevan, "Simple position sensorless starting method for brushless DC motor," in IET Electric Power Applications, 2008, vol. 2, no. 1, pp. 49-55.
    [38] P. Surana, R. Sreejith, and K. Rajagopal, "A low cost position sensorless brushless DC motor drive," in IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 2016, pp. 1-5.
    [39] K. R. Shouse and D. G. Taylor, "Sensorless velocity control of permanent-magnet synchronous motors," in IEEE Transactions on Control Systems Technology, Lake Buena Vista, FL, USA, 1998, vol. 6, no. 3, pp. 313-324.
    [40] Y.-C. Chang and Y.-Y. Tzou, "A new sensorless starting method for brushless DC motors without reversing rotation," in IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 2007, pp. 619-624.
    [41] T. Mathew and C. A. Sam, "Closed loop control of BLDC motor using a fuzzy logic controller and single current sensor," in International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 2013, pp. 1-6.
    [42] T. Instruments, "TMS320x2833x, TMS320x2823x Technical Reference Manual".
    [43] O. Semiconductor, "FDMT80080DC: N-Channel Dual CoolTM 88 PowerTrench® MOSFET 80V, 254A, 1.35mΩ".
    [44] T. Instruments, "LM339, LM239, LM139, LM2901 Quad Differential Comparators".
    [45] T. Instruments, "SN7414 data sheet, product information and support".
    [46] Allegro, "ACS712: Hall-Effect-Based Linear Current Sensor IC".

    無法下載圖示 全文公開日期 2026/09/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE