簡易檢索 / 詳目顯示

研究生: 王衍凱
Yen-Kai Wang
論文名稱: 以擴展型卡爾曼濾波器為基礎之感應馬達無感測器控制及定子與轉子阻抗估測
EKF-based rotor and stator resistance estimation in speed sensorless control of IMs
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 劉添華
Tian-Hua Liu
黃仲欽
Jonq-Chin Hwang
黃安橋
An-Chyau Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 166
中文關鍵詞: 感應馬達擴展型卡爾曼濾波器無速度感測器控制
外文關鍵詞: induction motor, EKF, speed-sensorless control
相關次數: 點閱:404下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 感應馬達之系統參數會隨操作環境的不同而產生參數漂移的現象。在無速度感測器
    控制的相關研究中, 受溫度影響造成之定子及轉子電阻漂移, 尤其受到重視, 原因在於
    定子及轉子電阻的變化, 對於轉速及磁通估測值會造成很大的誤差, 進而使閉迴路控制
    性能降低。因此在無感測器控制架構下, 控制系統對於估測器的仰賴程度相當高。
    以擴展型卡爾曼濾波器(Extended Kalman Filter, EKF) 為基礎所發展之估測器
    因具有雜訊免疫及線上即時估測的能力, 使其在無感測器控制議題上廣泛的被採用。然
    而目前已知的文獻中, 以EKF 為基礎之估測器均無法同時估測定子及轉子電阻的變動。
    針對此問題, 本論文以擴展型卡爾曼濾波器為基礎(EKF-based), 發展出可同時估測定
    子及轉子電阻的新式卡爾曼濾波器。此估測器乃藉由估測定子繞組之溫度以推估定子電
    阻, 與轉子電阻不具耦合關係, 因此不僅可達成定子與轉子電阻的同時估測, 對於轉子
    鋁棒斷裂(Broken-Bars) 造成電阻瞬間上升的現象亦能有效捕捉。經模擬結果顯示, 所
    發展出的估測器對於系統參數變化具有一定的強健性(robustness)。


    The system parameters of induction motor(IM) vary with different operating conditions. The temperature-dependent variation of the stator and rotor resistance, which induces a large estimation error on speed and flux, has been a critical issue for speed-sensorless control. On speed-sensorless control, the observer is as important as the controller. The noise immunity and real time estimation ability of Extended Kalman filter(EKF)-based observer lead to a popular application in the field of speed-sensorless control. However, the simultaneous estimation of stator and rotor resistance based on EKF in speed-sensorless control of IMs has not been done to the best of author's knowledge.
    A novel EKF-based estimation method is proposed for simultaneous estimation of stator and rotor resistance. The simultaneous estimation is achieved by an augmented state for the stator temperature dynamics. The broken-bar phenomenon of rotor can also be detected in the case we studied. Simulation results display promising robustness to variation of system parameters.

    1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 感應馬達之模型建立. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 2.1 交流機簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 10 2.2 感應馬達之a-b-c 軸數學模式[2] [3] . . . . . . . . . . . . . . . . . . . .11 2.3 座標軸轉換. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 18 2.4 座標軸轉換之分類及應用. . . . . . . . . . . . . . . .. . . . . . . . . . 21 2.5 感應馬達之q-d-0軸數學模式. . . . . . . . . . . . . . .. . . . . . . . . 25 2.6 感應機之電磁轉矩與運動方程式. . . . . . . . . . . . . . . . .. . . . . . 35 2.7 感應馬達之熱動態模型. . . . . . . . . . . . . . . . . . . . .. . . . . . 37 2.7.1 感應馬達的功率損失. . . . . . . . . . . . . . . . . . . . . . . .. . . 37 2.7.2 感應馬達之熱動態模型. . . . . . . . . . . . . . . . . . . . . . . . .. 39 3 控制器設計 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.1 控制策略規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 3.2 向量控制[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 控制器參數設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 3.4 感應馬達之無速度感測器直接向量控制. . . . . . . . . . . . . . . . . . . .67 3.5 正弦波寬調變(SPWM) 變頻器. . . . . . . . . . . . . . . . . . . . . . . . 69 4 感應馬達之擴展型卡爾曼濾波器設計 . . . . . . . . . . . . . . . . . . . . .73 4.1 卡爾曼濾波器簡介. . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 4.2 離散時間的卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . .75 4.3 擴展型卡爾曼濾波器[7] [8] . . . . . . . . . . . . . . . . . . . . . . . .82 4.4 無速度感測器之卡爾曼濾波器設計. . . . . . . . . . . . . . . . . . . . . .87 4.4.1 速度與負載擴項. . . . . . . . . . . . . . . . . . . . . . . . . . . ..88 4.4.2 轉子與定子電阻估測-切換式卡爾曼濾波器. . . . . . . . . . . . . . . . .95 4.4.3 溫度變化估測之新式卡爾曼濾波器設計. . . . . . . . . . . . . . . . . .102 5 無速度感測器之模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . .105 5.1 定子及轉子電阻估測模擬: 切換式卡爾曼濾波器. . . . . . . . . . . . . . .106 5.2 定子及轉子電阻估測模擬: 溫度-熱動態卡爾曼濾波器. . . . . . . . . . . . 119 5.3 溫度-熱動態卡爾曼濾波器對於系統參數之強健性測試. . . . . . . . . . . . 132 6 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .141 附錄A (感應馬達規格表). . . . . . . . . . . . . . . . . . . . . . . . .. . .150 附錄B (符號定義說明) . . . . . . . . . . . . . . . . . . . . . . . . . .. .151 作者簡介). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 153

    [1] 陳奕宏, 「高功率變頻器之效能控制與分析」, 國立台灣科技大學機械工程學系, 碩士論文(2000).
    [2] 黃仲欽, 「電機機械理論」, 課程講義,2010.
    [3] 劉昌煥主編, 「電機機械」, 東華書局,2002.
    [4] 劉昌煥, 「交流電機控制-向量控制與直接轉矩控制原理」, 東華書局,2008.
    [5] 劉豹, 現代控制理論. 科技圖書股份有限公司, 1992.
    [6] 鐘秀國, 「新型轉子磁場導向無感測器感應馬達驅動器」, 國立清華大學電機工程學系, 碩士論文(2005).
    [7] D. Simon, Optimal State Estimation Kalman, H1, and Nonlinear Approaches.
    John Wiley & Sons Inc., 2006.
    [8] G. Welch and G. Bishop, An Introduction to the Kalman Filter. Department
    of Computer Science University of North Carolina at Chapel Hill, 2006.
    [9] H. Beaty and J. L.Kirtley, Electric motor handbook. McGraw Hill Professional,1998.
    [10] G. D. Demetriades, H. Z. de la Parra, E. Andersson, and H. Olsson, “A
    real-time thermal model of a permanent-magnet synchronous motor,” IEEE
    Transactions on Power Electronics, vol. 25, pp. 463 – 474, February 2010.
    [11] H. M. model, “In wikipedia, the free encyclopedia.”
    [12] M. Barut, O. Bogosyan, and M. Gokasan, “Braided extended kalman filters
    for sensorless estimation in induction motors at high-low/zero speed,” IET
    Control Theory Appl., pp. 987–998, January.
    [13] S. Williamson and R. C. Healey, “Space vector representation of advanced motor models for vector controlled induction motors,” IEE Proc. Electr. Power
    Appl., vol. 143, pp. 69–77, January 1996.
    [14] T. I. Europe, Sensorless Control with Kalman Filter on TMS320 Fixed-Point
    DSP, 1997.
    [15] Z. J. Deng Xin, L. Hui, and W. Qingyi, “Design of mras-based observer
    in speed sensorless induction motor drive,” IEEE Conference on Industrial
    Electronics and Applications,ICIEA, pp. 3585 – 3590, May 2009.
    [16] M. Dybkowski and T. Orlowska-Kowalska, “Application of the stator currentbased mras speed estimator in the sensorless induction motor drive,” Power Electronics and Motion Control Conference,EPE-PEMC, pp. 2306 – 2311,
    September 2008.
    [17] H. M. Kojabadi, L. Chang, and R. Doraiswami, “A mras-based adaptive
    pseudoreduced-order flux observer for sensorless induction motor drives,”
    IEEE Transactions on Power Electronics, vol. 20, pp. 930–938, July 2005.
    [18] K. Ohyama, G. Asher, and M. Sumner, “Low speed and regenerating operation
    of sensorless vector control system of induction motor using observer gain
    tuning and high frequency injection technique,” 13th European Conference on
    Power Electronics and Applications, 2 EPE ’09., pp. 1 – 8, September 2009.
    [19] H. Zatocil, “Sensorless control of ac machines using high-frequency
    excitation,” 13th International Power Electronics and Motion Control
    Conference,EPE-PEMC 2008., pp. 1024 – 1032, September 2008.
    [20] H. Kiyotake, K. Shinohara, K. Yamamoto, and D. Katoh, “Speed sensorless
    vector control of induction motors utilizing slot harmonics caused by variation
    of inductance,” 4th IET Conference on Power Electronics, Machines and
    Drives,PEMD 2008., pp. 722 – 726, July 2008.
    [21] R. Raute, C. Caruana, C. S. Staines, J. Cilia, M. Sumner, and G. Asher,
    “Sensorless control of induction machines by using pwm harmonics for rotor
    bar slotting detection,” Industry Applications Society Annual Meeting,IAS’08.
    IEEE, pp. 1 – 8, October 2008.
    [22] M. Barut, O. Bogosyan, and M. Gokasan, “Experimental evaluation of
    braided ekf for sensorless control of induction motors,” IEEE Trans. On Industrial Electronics, vol. 55, February 2008.
    [23] Y. Zhang, Z. Zhao, T. Lu, and L. Yuan, “A comparative study of luenberger
    observer, sliding mode observer and extended kalman filter for sensorless vector control of induction motor drives,” Energy Conversion Congress and Exposition,2009, pp. 2466 – 2473, 2009.
    [24] T. Orlowska-Kowalska, M. Dybkowski, and K. Szabat, “Adaptive neuro-fuzzy
    control of the sensorless induction motor drive system,” 12th International
    Power Electronics and Motion Control Conference,EPE-PEMC 2006., pp.
    1836 – 1841, September 2006.
    [25] M. Zerikat, S. Chekroun, and A. Mechernene, “Fuzzy-neural networks
    controller-based adapatation mechanism for mras sensorless induction motor
    drives,” 8th International Symposium on Advanced Electromechanical Motion
    Systems and Electric Drives Joint Symposium,ELECTROMOTION 2009., pp.1–7, July 2009.
    [26] F.Chen and M. Dunnigan, “Comparative study of a sliding-mode observer
    and kalman filters for full state estimation in an induction machine,” IEEE
    Proc.Electr.Power Appl., vol. 149, January 2002.
    [27] K.L.Shi, T.F.Chan, Y. K. Wong, and S. L. Ho, “Speed estimation of an induction otor drive using extended kalman filter,” Power Engineering Society
    Winter Meeting, 2000. IEEE.
    [28] M. KhafaIlah, A. E. Afia, A. Cherid, A. S. F. El Mariami, and B. E. Moussaod,“Ekf based speed sensorless vector control of an lnduction machine,”
    International Conference on Industrial Technology., vol. 3, pp. 1338 – 1344,
    2004.
    [29] M. Barut, S. Bogosyan, and M. Gokasan, “Speed-sensorless estimation for
    induction motors using extended kalman filters,” IEEE Trans. On Industrial
    Electronics, vol. 54, February 2007.
    [30] M. Barut, O. Bogosyan, and M. Gokasan, “An ekf based reduced order estimator for the sensorless control of im’s,” Control Applications,CCA 2003,IEEE,
    vol. 2, pp. 1256 – 1261, June 2003.
    [31] F. J and S. MBB, “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle,” IEEE Trans. on Energy Conversion, vol. 16, pp. 104– 109, 2001.
    [32] A. V. Leite, R. E. Araujo, and D. Freitas, “Full and reduced order extended kalman filter for speed estimation in induction motor drives: A comparative study,” Power Electronics Specialists Conference, vol. 3, pp. 2293 – 2299, 2004.
    [33] T. F. C. K. L. Shi, Y. K. Wong, and S. L. Ho, “Speed estimation of an induction motor drive using an optimized extended kalman filter,” IEEE Trans. on industrial electronics, vol. 49, pp. 124–133, February 2002.
    [34] L. Cai, Y. Zhang, Z. Zhang, C. Liu, and Z. Lu, “Speed estimation of an
    induction motor drive using an optimized extended kalman filter,” Power
    Electronics Specialist Conference,PESC, vol. 1, pp. 345–349, 2003.
    [35] B. W. Williams and T. C. Green, “Steady-state control of an induction motor by estimation of stator flux magnitude,” Proc. Inst. Elect. Eng. B, vol.138,pp. 69–74, March 1991.
    [36] M. Menaa, O. Touhami, and R. Ibtiouen, “Estimation of rotor resistance of
    an induction motor using extended kalman filter and spiral vector theory,”
    IEEE Conference on Control Applications - CCA 2003, June 2003.
    [37] M. Barut, O. Bogosyan, and M. Gokasan, “Ekf based estimation for direct
    vector control of induction motors,” IECON 02,Industrial Electronics Society,
    IEEE 2002 28th Annual Conference, vol. 2, pp. 1710 – 1715, 2002.
    [38] ——, “Speed sensorless direct torque control of ims with rotor resistance estimation,” Energy Conversion and Management, vol. 46, pp. 335–349, 2005.
    [39] ——, “Switching ekf technique for rotor and stator resistance estimation in speed sensorless control of ims,” Energy Conversion and Management, vol. 48, pp. 3120–3134, 2007.
    [40] I.-J. Ha and S.-H. Lee, “An online identification method for both stator and rotor resistances of induction motors without rotational transducers,” IEEE Trans. On Industrial Electronics, vol. 47, August 2000.
    [41] H. Hafezia and A. Jalilian, “Design and construction of induction motor
    thermal monitoring system,” Universities Power Engineering Conference,
    UPEC,2006 .
    [42] R. Beguenane and M. E. H. Benbouzid, “Induction motors thermal monitoring
    by means of rotor resistance identification,” IEEE Transactions on Energy
    Conversion, vol. 14, pp. 566 – 570, September 1999.
    [43] C. Mastorocostas, I. Kioskeridis, and N. Margaris, “Thermal and slip effects on rotor time constant in vector controlled induction motor drives,” IEEE Transactions on Power Electronics, vol. 21, pp. 495 – 504, 2006.
    [44] P.Preecha, J.Dejvises, S. Chusanapiputt, and S. Phoomvuthisam, “A temperature calculation and prediction of a three-phase induction motor with non sinusoidal voltage supply,” lntematlonal Conference on Power System Technology,vol. 1, pp. 608 – 611, November 2004.
    [45] D. Casadei, F. Profumo, G. Serra, and A. Tani, “Foc and dtc: Two viable
    schemes for induction motors torque control,” IEEE Transactions on Power
    Electronics,2002, vol. 17, pp. 779 – 787, 2002.
    [46] H. Li, W. Xuhui, and C. Guilan, “General adaptive schemes for resistance and speed estimation in induction motor drives,” Computers in Power Electronics,
    2006 IEEE, pp. 173 – 178, July 2006.
    [47] N. Farid, B. Sebti, K. Mebarka, and B. Tayeb, “Performance analysis of
    field-oriented control and direct torque control for sensorless induction motor
    drives,” Mediterranean Conference on Control & Automation, pp. 1–6, 2007.
    [48] L.-Z. Shang, direct Torque Control Strategy Design of Induction Motor Servo Driver System, 國立中央大學電機工程研究所, 博士論文(2009).
    [49] K. Ogata, Discrete time control systems. Prentice Hall Inc., 1987.
    [50] H. W. Sorenson, Kalman Filtering Theory and Application. IEEE Press
    selected reprint series, 1970.

    QR CODE