簡易檢索 / 詳目顯示

研究生: 高國恒
KUO-HENG KAO
論文名稱: 六相埋入型永磁式同步電動機的電流控制策略研發
Development of Current Control Strategies for Six-Phase Interior Type Permanent-Magent Synchronous Motor
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Lin
高瑋澤
Wei-Tse Kao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 103
中文關鍵詞: 六相埋入型永磁式同步電動機雙組三相變頻器電壓空間向量脈波寬度調變控制轉速及電流閉迴路控制單組qd軸模式雙組qd軸模式共模及差模模式
外文關鍵詞: six-phase permanent magnet synchronous motor, dual-set three-phase inverter, voltage space vector pulse width modulation control, voltage space vector pulse width modulation control, speed and current closed-loop control, single group qd axis mode, double group qd axis mode, common mode and differential mode
相關次數: 點閱:419下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製六相埋入型永磁式同步電動機電流控制策略。在電流閉迴路控制方面,採用單組qd軸模式、雙組qd軸模式、共模及差模模式的電流控制,其中單組qd軸模式控制較為簡單,但會造成abc繞組與xyz繞組相電流不平衡。雙組qd軸模式能夠解決相電流不平衡的問題,但對於降低相電流諧波含量的效果不足,故本文最後採用共模及差模模式,以降低相電流諧波含量及轉矩抖動,提升六相永磁同步電動機的性能。
    本文採用Matlab/Simulink軟體模擬雙組三相變頻器及六相埋入型永磁式同步電動機的轉速及電流閉迴路控制,以驗證本文控制策略的可行性。轉速及電流閉迴路控制策略的實測,在轉速為2400 rpm、機械轉矩為5.46 N-m的情況下,雙組qd軸模式電流控制,將原本a相相電流峰值29.02 A、x相相電流峰值25.74 A不平衡的情況改善為a相相電流峰值26.4 A、x相相電流峰值26.32 A。共模及差模模式電流控制,將a相相電流諧波含量8.19 %、x相相電流諧波含量8.6 %,降低至將a相相電流諧波含量4.8 %、x相相電流諧波含量5.06 %,轉矩抖動0.23 N-m減少至0.1 N-m。六相永磁同步電動機效率從85.3 %提升至88 %。


    This paper aims to develop a current control strategy for a six-phase interior type permanent-magnet synchronous motor. In terms of current closed-loop control, single-set qd-axis mode, dual-set qd-axis mode, common and differential-mode current control strategies are employed. Among them, the single-set qd-axis mode control is relatively simple but can cause imbalance in the abc windings and xyz windings' phase currents. The dual-set qd-axis mode can solve the problem of phase current imbalance, but it is not effective in reducing the harmonic content of the phase currents. Therefore, this paper ultimately adopts the common mode and differential mode strategies to reduce the harmonic content of the phase currents and torque ripple, thereby improving the performance of the six-phase permanent magnet synchronous motor.
    This paper uses Matlab/Simulink software to simulate the speed and current closed-loop control of dual-group three-phase inverters and six-phase interior type permanent-magnet synchronous motors to verify the feasibility of the control strategy in this paper. The actual measurement of single-set qd-axis mode current control strategy shows that when the speed is 2400 rpm and the mechanical torque is 5.46 N-m, the current peak value of the original a-phase phase current is 29.02 A, and the peak value of the x-phase phase current is 25.74 A. Using the two-set qd-axis mode current control,the unbalanced situation is improved to a phase current peak value of 26.4 A and phase x phase current peak value of 26.32 A. Common mode and differential mode current control, reducing the harmonic content of phase a phase current from 8.19% and x phase current harmonic content to 8.6% to reduce the harmonic content of phase a phase current to 4.8% and phase x phase current harmonic content 5.06%, and the torque jitter was reduced from 0.23 N-m to 0.1 N-m. The efficiency of the six-phase permanent magnet synchronous motor is increased from 85.3% to 88%.

    摘要 I Abstract II 誌謝 III 目錄 IV 符號索引 VII 圖表索引 XVI 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻探討 1 1-2-1 六相埋入型永磁式同步電動機 1 1-2-2 單組qd軸模式電流控制策略 2 1-2-3 雙組qd軸模式電流控制策略 2 1-2-4 共模及差模模式的電流控制策略 2 1-3 系統架構及特色 3 1-4 本文大綱 5 第二章 六相埋入型永磁式同步電動機的模式 6 2-1 前言 6 2-2 單組qd軸模式之六相永磁式電動機模式 6 2-3 單組qd軸模式的轉子旋轉座標系統的轉換及反轉換的 實現 10 2-4 雙組qd軸模式之六相永磁式電動機模式 11 2-5 雙組qd軸模式的轉子旋轉座標系統的轉換及反轉換的實現 14 2-6 共模及差模模式之六相永磁式電動機模式 15 2-7 共模及差模模式的轉換及反轉換的實現 17 2-8 結語 18 第三章 六相永磁式同步電動機的電流控制策略 19 3-1 前言 19 3-2 單組qd軸模式的電流控制策略 19 3-3 雙組qd軸模式的電流控制策略 20 3-4 共模及差模模式的電流控制策略 23 3-5 六相永磁式同步電動機的電流控制策略模擬 25 3-5-1 單組qd軸模式的電流控制的模擬結果 26 3-5-2 雙組qd軸模式的電流控制的模擬結果 30 3-5-3 共模及差模模式的之流控制的模擬結果 33 3-6 結語 36 第四章 實體製作與實測 38 4-1 前言 38 4-2 本文驅動器的軟體程式規劃 39 4-2-1 數位訊號處理器(DSP)程式流程規劃 39 4-2-2 單組qd軸模式的電流控制程式規劃 41 4-2-3 雙組qd軸模式的電流控制程式規劃 43 4-2-4 共模及差模模式電流控制程式規劃 45 4-3 實測結果 47 4-3-1 單組qd軸模式電流控制的實測結果 47 4-3-2 雙組qd軸模式電流控制的實測結果 50 4-3-3 共模及差模模式電流控制的實測結果 54 4-4 結語 58 第五章 結論與建議 59 5-1 結論 59 5-2 建議 60 六、參考文獻 61 附錄A 電壓空間向量脈波寬度調變控制 67 A-1 abc組三相變頻器的電壓空間向量脈波寬度調變控制 68 A-2 xyz組三相變頻器的電壓空間向量脈波寬度調變控制 70 附錄B 六相永磁同步馬達電流控制策略Simulink模擬程式 72 A 單組qd軸模式的電流控制的Simulink模擬程式 73 B 雙組qd軸模式的電流控制的Simulink模擬程式 75 C 共模及差模模式的電流控制的Simulink模擬程式 79

    [1] Y. C. H. F. J. Lin, J. C. Hwang,M. T. Tsai, "Fault-Tolerant Control of a Six-Phase Motor Drive System Using a Takagi–Sugeno–Kang Type Fuzzy Neural Network With Asymmetric Membership Function," IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3557-3572, 2013, doi: 10.1109/TPEL.2012.2224888.
    [2] T. K. N. Polater, P. Tricoli, "Control and Power Sharing Strategy of Dual Three-Phase Permanent Magnet Synchronous Motor for Light Railway Applications," in 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), 25-28 Oct. 2021 2021, pp. 1-6, doi: 10.1109/VPPC53923.2021.9699264.
    [3] Y. Zhu, Gu, Weisong,Lu, Ke,Wu, Zhihong, "Vector Control of Asymmetric Dual Three-Phase PMSM in Full Modulation Range," IEEE Access, vol. 8, pp. 104479-104493, 2020, doi: 10.1109/ access.2020.2999647.
    [4] Z. Y. C. Zhang, L. Yang,X. Zhou, "Model-Free Adaptive Iterative Learning Control for Six-Phase Propulsion PMSM," in 2021 24th International Conference on Electrical Machines and Systems (ICEMS), 31 Oct.-3 Nov. 2021 2021, pp. 1889-1893, doi: 10.23919/ICEMS52562.2021.9634607.
    [5] Q. P. Zhang, Hailang,Wang, Zunheng,Xu, Xiuxian,Zeng, Depeng, "Torque Increase Strategy of Dual Three-phase Permanent Magnet Synchronous Motor Based on VSD Model Harmonic Current Injection," presented at the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), 2022.
    [6] M. J. D. H. S. Che, E. Levi,M. Jones,W. P. Hew,N. A. Rahim, "Postfault Operation of an Asymmetrical Six-Phase Induction Machine With Single and Two Isolated Neutral Points," IEEE Transactions on Power Electronics, vol. 29, no. 10, pp. 5406-5416, 2014, doi: 10.1109/TPEL.2013.2293195.
    [7] Z. Q. Z. Y. Hu, M. Odavic, "Comparison of Two-Individual Current Control and Vector Space Decomposition Control for Dual Three-Phase PMSM," IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4483-4492, 2017, doi: 10.1109/TIA.2017.2703682.
    [8] O. D. S. Rubino, E. Armando,I. R. Bojoi,E. Levi, "A Novel Matrix Transformation for Decoupled Control of Modular Multiphase PMSM Drives," IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 8088-8101, 2021, doi: 10.1109/TPEL.2020.3043083.
    [9] K. y. W. L. Yuan, B. x. Hu,S. Chen, "Current Control Method with Enhanced PI Controller for Six-Phase PM Synchronous Motor Drive," in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 13-16 Nov. 2016 2016, pp. 1-6.
    [10] Y. L. S. He, G. Zhou,J. Gai,Y. Hu,Y. Li,Y. Zhang,Y. Chen,D. Luo,Y. Feng,Z. Shuai, "Digital Collaborative Development of a High Reliable Auxiliary Electric Drive System for eTransportation: From Dual Three-Phase PMSM to Control Algorithm," IEEE Access, vol. 8, pp. 178755-178769, 2020, doi: 10.1109/ACCESS.2020.3027633.
    [11] J. W. Y. He;Y. Wang, Y. Feng,J. Liu, "A Simple Current Sharing Scheme for Dual Three-Phase Permanent-Magnet Synchronous Motor Drives," in 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 21-25 Feb. 2010 2010, pp. 1093-1096, doi: 10.1109/APEC.2010.5433366.
    [12] P. W. Y. Rahmoun, A. Schmitt,H. Hammerer, "Six-Phase PMSM Drive Inverter Testing on a High Performance Power Hardware-in-the-Loop Testbed," in 2020 22nd European Conference on Power Electronics and Applications, 7-11 Sept. 2020,pp.P.1-P.10,doi10.23919/EPE20ECCEEurope43536.2020.9215638.
    [13] S. P. D. A. S. Tomer, "Performance Analysis of Two Inverter Fed Six Phase PMSM Drive," in 2013 Nirma University International Conference on Engineering (NUiCONE), 28-30 Nov. 2013 2013, pp. 1-5, doi: 10.1109/NUiCONE.2013.6780154.
    [14] A. S. A.-K. M. Mamdouh, M. Ali Abido, "Experimental Assessment of Weighting-Factorless Predictive Current Control for Asymmetrical Six-Phase Induction Motor," in IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society, 17-20 Oct. 2022 2022, pp. 1-6, doi: 10.1109/IECON49645.2022.9968365.
    [15] 劉育涵,"雙三相永磁輔助型同步磁阻電動機驅動系統之設計",國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百零七年。
    [16] 李家瑜,"雙組三相永磁式同步電動機位置控制系統研製",國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十一年。
    [17] M. V. M. Furmanik, P. Rafajdus, "Current Harmonics Control in Six-Phase PMSM," in 2022 ELEKTRO (ELEKTRO), 23-26 May 2022 2022, pp. 1-5, doi: 10.1109/ELEKTRO53996.2022.9803632.
    [18] O. K. S. Amornwongpeeti, J. Wang,C. Antaloae,M. Soumelidis,N. Shah, "A Combined MTPA and Maximum Efficiency Control Strategy for IPMSM Motor Drive Systems," in 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), 2-4 Nov. 2016 2016, pp. 1-6, doi: 10.1109/ESARS-ITEC.2016.7841412.
    [19] S. C. N. Bedetti, C. Olsen,R. Petrella, "Automatic MTPA Tracking in IPMSM Drives: Loop Dynamics, Design, and Auto-Tuning," IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4547-4558, 2017, doi: 10.1109/TIA.2017.2708683.
    [20] T. K. L. Y. A. R. I. Mohamed, "Adaptive Self-Tuning MTPA Vector Controller for IPMSM Drive System," IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 636-644, 2006, doi: 10.1109 /TEC.2006.878243.
    [21] D. O. D. Z. Li, W. Li,P. Song,A. Balamurali,N. C. Kar, "A Comprehensive Review of State-of-the-Art Maximum Torque Per Ampere Strategies for Permanent Magnet Synchronous Motors," in 2020 10th International Electric Drives Production Conference (EDPC), 8-9 Dec. 2020 2020, pp. 1-8, doi: 10.1109 /EDPC51184. 2020.9388199.
    [22] H. W. J. Hang, S. Ding,Y. Huang,W. Hua, "Improved Loss Minimization Control for IPMSM Using Equivalent Conversion Method," IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1931-1940, 2021, doi: 10.1109/TPEL.2020.3012018.
    [23] P. Ching-Tsai, S. M. Sue, "A Linear Maximum Torque Per Ampere Control for IPMSM Drives Over Full-Speed Range," IEEE Transactions on Energy Conversion, vol. 20, no. 2, pp. 359-366, 2005, doi: 10.1109/TEC.2004.841517.
    [24] K. A. Dianov, Young-Kwan,Lee, Sang-Joon,Lee, Sang-Taek, "Robust Self-Tuning MTPA Algorithm for IPMSM Drives," in 2008 34th Annual Conference of IEEE Industrial Electronics, 10-13 Nov. 2008 2008, pp. 1355-1360, doi: 10.1109/IECON.2008.4758151.
    [25] 劉呈軒,"應用於電動機車之永磁同步電動機控制策略研究",國立臺灣大學電機工程系,碩士論文,台北市,民國一百零九年。
    [26] 張博涵,"埋入型永磁式同步電動機及驅動器研製",國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十一年。
    [27] 貝為中,"六相埋入型永磁同步馬達設計及量測",國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十二年。
    [28] W.-T. Kao, Hwang, Jonq-Chin,Liu, Jia-En, "Development of Three-Phase Permanent-Magnet Synchronous Motor Drive with Strategy to Suppress Harmonic Current," Energies, vol. 14, no. 6, 2021, doi: 10.3390/en14061583.
    [29] Y. L. Y. Hu, X. Ma,X. Li,S. Huang, "Flux-Weakening Control of Dual Three-Phase PMSM Based on Vector Space Decomposition Control," IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 8428-8438, 2021, doi: 10.1109/TPEL.2020.3044574.
    [30] Y. Hu, Zhu, Z. Q.,Odavic, Milijana, "Torque Capability Enhancement of Dual Three-Phase PMSM Drive With Fifth and Seventh Current Harmonics Injection," IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4526-4535, 2017, doi: 10.1109/tia.2017.2707330.
    [31] C. L. Y. Luo, "Pre- and Post-Fault Tolerant Operation of a Six-Phase PMSM Motor Using FCS-MPC Without Controller Reconfiguration, " IEEE Transactions on Vehicular Technology, vol. 68, no. 1, pp. 254-263, 2019, doi: 10.1109/TVT.2018.2883665.
    [32] J. L. D. Ye, R. Qu,H. Lu,Y. Lu, "Finite Set Model Predictive MTPA Control with VSD Method for Asymmetric Six-Phase PMSM," in 2017 IEEE International Electric Machines and Drives Conference, 21-24 May 2017,pp.1-7,doi:10.1109/IEMDC .2017.8002297.
    [33] K. y. W. L. Yuan, B. x. Hu,S. Chen, "Current Control Method with Enhanced PI Controller for Six-Phase PM Synchronous Motor Drive," in 2016 19th International Conference on Electrical Machines and Systems (ICEMS), 13-16 Nov. 2016 2016, pp. 1-6.
    [34] 黃仲欽,"電機機械控制講義",國立臺灣科技大學,電機工程系,台北市,民國一百一十年。

    無法下載圖示
    全文公開日期 2028/07/12 (校外網路)
    全文公開日期 2028/07/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE