簡易檢索 / 詳目顯示

研究生: 黃郁文
Yu-Wen Huang
論文名稱: 六相永磁式同步馬達及機械負載的功率即時模擬器製作
Implementation of Power Real-time Emulators for Six-phase Permanent Magnet Synchronous Motor and Mechanical Load
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 劉傳聖
Chuan-Sheng Liu
林長華
Chang-Hua Lin
高瑋澤
Wei-Tse Kao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 六相永磁式同步馬達轉子旋轉座標軸系統信號即時模擬器功率即時模擬器電流預測控制
外文關鍵詞: six-phase permanent magnet synchronous motor, rotor rotation coordinate system, signal real-time emulator, power real-time emulator, current predictive control
相關次數: 點閱:500下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在六相永磁式同步馬達及機械負載的即時模擬器製作,提供具各馬達參數通用性、機械負載的測試條件,作為六相永磁式同步馬達驅動器開發時的測試平台。建立六相永磁式同步馬達及機械負載之數學模式,採用轉子旋轉座標軸系統及其離散模式在MATLAB/Simulink建立模擬程式,並轉換為硬體描述語言燒錄於PXI模組,操作介面以LabVIEW編寫,具即時的信號監控畫面。本文的功率即時模擬器採用國家儀器公司的PXI模組,與兩支路電感耦合型六相換流器整合,在PXI模組內具有高速的類比數位轉換器及數位類比轉換器,六相永磁式同步馬達及機械負載模式、虛擬解角器,六相換流器的電流預測控制等。軟體程式由PXI模組的FPGA採用硬體描述語言完成,運算週期為5 MHz,提供負載轉速與機械負載轉矩兩種不同條件測試。
    在六相馬達驅動器轉速1200 rpm、負載轉矩6 N-m的穩態電流響應:信號即時模擬器的實測,a相電流峰值為23.66 A,總諧波失真率為1.98 %。功率即時模擬器的實測,輸入功率為 817 W,a相電流峰值為22.35 A,總諧波失真率為10.97 %,兩者誤差原因為電力電路的電磁干擾與電感的磁通飽和問題,功率即時模擬器其電流頻譜更貼近實際馬達特性。實測結果顯示本文製作平台,可以模擬六相永磁式同步馬達及機械負載,降低傳統測試平台的測試風險與成本,亦可測試控制策略差異,縮短六相馬達驅動器開發時間。


    The purpose of this thesis is to Implementation of power real-time emulators for six-phase permanent magnet synchronous motor and mechanical load, providing a versatile testing platform with generic motor parameter compatibility and various testing conditions for the mechanical load. The emulator serves as a testing platform for the development of six-phase PMSM drives. A mathematical model for the six-phase PMSM and mechanical load is established in this study. The model incorporates the rotor rotating coordinate system and its discrete model to construct a simulation program using MATLAB/Simulink. Subsequently, the simulation program is transformed into a hardware description language to develop a signal real-time emulator. The power real-time emulator utilizes the PXI module from National Instruments and two-branch inductance-type coupled six-phase inverters. The PXI module is equipped with high-speed analog-to-digital converters, digital-to-analog converters, six-phase motor and mechanical load models, a virtual resolver, and current predictive control for the six-phase inverter. The FPGA of the PXI module is utilized to implement the real-time emulator using a hardware description language, with a computational cycle of 5 MHz. The real-time emulator offers testing capabilities under two different conditions: load speed and mechanical load torque.
    The current response was measured in a six-phase PMSM drive with a speed of 1200 rpm and a load torque of 6 N-m. In the signal real-time emulator test, each phase current peak value is 23.66 A and total harmonic distortion is 1.98 %. In the power real-time emulator test, with an input power of 817 W, each phase current peak value is 22.35 A and the total harmonic distortion 10.97%. The discrepancy between the two cases in the electromagnetic interference of the power circuit and the magnetic flux saturation of the inductance. The power real-time emulator provides a current spectrum that closely matches the characteristics of the actual motor. The results demonstrate that the platform is capable of emulating six-phase PMSM and mechanical loads. It effectively reduces the testing risks and costs associated with traditional testing platforms. Additionally, it enables the evaluation of different control strategies, thereby shortening the development time of six-phase PMSM drives.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 XI 符號索引 XII 第一章 緒論 1 1-1 動機及目的 1 1-2 文獻探討 2 1-2-1 馬達模型類別 2 1-2-2 系統架構類別 2 1-3 本文架構及特色 3 1-4 本文大綱 5 第二章 六相永磁式同步馬達及機械負載數學模式 6 2-1 前言 6 2-2 六相永磁式同步馬達及機械負載abc及xyz模式 6 2-3 磁極角的定義與轉換矩陣及反矩陣 8 2-4 六相永磁式同步馬達在轉子旋轉座標軸系統qd軸模式 11 2-5 結論 14 第三章 六相永磁式同步馬達及機械負載即時模擬器的規劃 15 3-1 前言 15 3-2 六相永磁式同步馬達及機械負載離散模式 15 3-2-1 離散化設定 15 3-2-2 系統標么 17 3-2-3 六相永磁式同步馬達與機械負載qd軸離散模式 18 3-3 六相永磁式同步馬達及機械負載模型的實現規劃 19 3-3-1 簡化參數設定 20 3-3-2 信號即時模擬器的Simulink模擬結果 29 3-4 功率即時模擬器的實現規劃 35 3-4-1 耦合電路 36 3-4-2 功率即時模擬器的電流預測控制策略 37 3-4-3 功率即時模擬器的Simulink模擬結果 40 3-5 結論 46 第四章 信號及功率即時模擬器的實體製作 47 4-1 前言 47 4-2 實體製作 47 4-2-1 PXI模組介紹 47 4-2-2 LabVIEW的介面設定 48 4-2-3 六相馬達驅動器的變頻器開關偵測電路 51 4-2-4 周邊電路 52 4-3 信號即時模擬器的實體製作與實測 53 4-4 功率即時模擬器的實體製作與實測 57 4-5 結論 64 第五章 結論與建議 66 5-1 結論 66 5-2 建議 67 參考文獻 68 附錄A 馬達規格 74 附錄B MATLAB/Simulink模擬程式介紹 75 附錄C 六相永磁式同步馬達驅動器的控制策略 82

    [1] Y. Rahmoun, P. Winzer, A. Schmitt and H. Hammerer, "Six-Phase PMSM Drive Inverter Testing on a High Performance Power Hardware-in-the-Loop Testbed," 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), Lyon, France, 2020, pp. P.1-P.10, doi: 10.23919/EPE20ECCEEurope 43536.2020.9215638.
    [2] 周偉翔 ,感應馬達及機械負載功率模擬器研發,國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十年。
    [3] 許智鈞 ,三相感應馬達即時模擬之功率模擬器研發,國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十一年。
    [4] 林祐瑄 ,永磁式同步馬達及機械負載之功率硬體模擬器開發, 國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百零九年。
    [5] N. Sharma, G. Mademlis, Y. Liu and J. Tang, "Evaluation of Operating Range of a Machine Emulator for a Back-to-Back Power-Hardware-in-the-Loop Test Bench," in IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 9783-9792, Oct. 2022, doi: 10.1109/TIE.2022.3142421.
    [6] X. Zou, X. Xiao, Y. Song, W. Wang and C. Tang, "Power Electronics Based Permanent Magnet Synchronous Machine Emulation Methods Research," 2017 Chinese Automation Congress (CAC), Jinan, China, 2017, pp. 3492-3497, doi: 10.1109/CAC.2017.8243385.
    [7] K. Saito and H. Akagi, "A Power Hardware-in-the-Loop (P-HIL) Test Bench Using Two Modular Multilevel DSCC Converters for a Synchronous Motor Drive," in IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4563-4573, Sept.-Oct. 2018, doi: 10.1109/TIA.2018.2833424.
    [8] X. Zou, X. Xiao, P. He and Y. Song, "Permanent Magnet Synchronous Machine Emulation Based on Power Hardware-in-The-Loop Simulation," 2019 IEEE International Electric Machines & Drives Conference (IEMDC), San Diego, CA, USA, 2019, pp. 248-253, doi: 10.1109/IEMDC.2019.8785386.
    [9] I. Mishra, R. N. Tripathi, V. K. Singh and T. Hanamoto, "A Hardware-in-the-Loop Simulation Approach for Analysis of Permanent Magnet Synchronous Motor Drive," 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), Busan, Korea (South), 2019, pp. 1-6, doi: 10.23919/ICPE2019-ECCEAsia 42246.2019.8797143.
    [10] 王俊超 ,六相永磁式同步電動機驅動器之分析及設計, 國立臺灣科技大學電機工程系,碩士論文,台北市,民國九十四年。
    [11] H. Dhulipati, E. Ghosh, S. Mukundan, P. Korta, J. Tjong and N. C. Kar, "Advanced Design Optimization Technique for Torque Profile Improvement in Six-Phase PMSM Using Supervised Machine Learning for Direct-Drive EV," in IEEE Transactions on Energy Conversion, vol. 34, no. 4, pp. 2041-2051, Dec. 2019, doi: 10.1109/ TEC.2019.2933619.
    [12] N. Polater, T. Kamel and P. Tricoli, "Control and Power Sharing Strategy of Dual Three-Phase Permanent Magnet Synchronous Motor for Light Railway Applications," 2021 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 2021, pp. 1-6, doi: 10.1109/VPPC53923.2021.9699264.
    [13] M. L. Woldesemayat, H. Lee, S. Won and K. Nam, "Modeling and Verification of a Six-Phase Interior Permanent Magnet Synchronous Motor," in IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8661-8671, Oct. 2018, doi: 10.1109/TPEL.2017.2782804.
    [14] S. Rubino, O. Dordevic, E. Armando, I. R. Bojoi and E. Levi, "A Novel Matrix Transformation for Decoupled Control of Modular Multiphase PMSM Drives," in IEEE Transactions on Power Electronics, vol. 36, no. 7, pp. 8088-8101, July 2021, doi: 10.1109/TPEL.2020.3043083.
    [15] Y. Luo, M. A. Awal, L. Yang, W. Yu and I. Husain, "FPGA Based High Bandwidth Motor Emulator for Interior Permanent Machine Utilizing SiC Power Converter," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019, pp. 1-8, doi: 10.1109/ECCE.2019.8913225.
    [16] Y. Luo, M. A. Awal, W. Yu and I. Husain, "FPGA-Based High-Bandwidth Motor Emulator for Interior Permanent Magnet Machine Utilizing SiC Power Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 4, pp. 4340-4353, Aug. 2021, doi: 10.1109/JESTPE.2020.3015179.
    [17] B. Zhang, H. -N. Chiu and Y. -M. Chen, "Coupling Network State Equation Control For Permanent Magnet Synchronous Motor Emulators," 2021 IEEE International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 2021, pp. 1-5, doi: 10.1109/ IFEEC53238.2021.9662007.
    [18] Y. Luo, M. A. Awal, W. Yu and I. Husain, "FPGA Implementation for Rapid Prototyping of High Performance Voltage Source Inverters," in CPSS Transactions on Power Electronics and Applications, vol. 6, no. 4, pp. 320-331, Dec. 2021, doi: 10.24295/CPSSTPEA.2021.00030.
    [19] 黃兆廷 ,具四支路電感耦合單相及三相換流器設計,國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十年。
    [20] H. Li, Y. Liu, D. Li and X. Li, "Equivalent Modeling and Analysis of Three-phase LCL Grid-connected Inverter," 2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 2021, pp. 86-89, doi: 10.1109/ICIBA52610.2021.9688048.
    [21] R. Cheng, Y. Song, K. Ma, K. Guo and Y. Tang, "Modeling of Interconnected Converter System with Coupled LCL and LC Filters," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 5927-5933, doi: 10.1109/ECCE. 2018.8557504.
    [22] F. Scapino, "Modelling the Connection of Alternative Energy Sources to the Three-phase Utility Grid for Circuit Simulation," IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 2006, pp. 1834-1839, doi: 10.1109/IECON.2006.347473.
    [23] H. Jamal, S. Albatran and I. A. Smadi, "Optimal Design of Output LC Filter and Cooling for Three-phase Voltage-source Inverters Using Teaching-learning-based Optimization," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 1-6, doi: 10.1109/ECCE.2016.7855316.
    [24] L. Bigarelli, M. di Benedetto, A. Lidozzi and L. Solero, "Stability and Accuracy Evaluation of LCL Coupling Networks for PMSM Emulation PHIL," 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-7, doi: 10.1109 /ECCE50734.2022.9947686.
    [25] L. Bigarelli, M. di Benedetto, A. Lidozzi, F. Crescimbini and P. J. Grbović, "Design Issues for Real-Time PMSM Power-Hadware-in the-Loop: Analysis at Switching Frequency," 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 2020, pp. 6298-6305, doi: 10.1109/ECCE44975.2020.9236137.
    [26] A. Saleh, M. Adel, P. Mawby and M. Taha, "Inductance Sizing of Electric Motor Emulator Using Particle Swarm Optimization for Drive Train Applications," 2022 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2022, pp. 01-07, doi: 10.1109/MEPCON55441.2022.10021780.
    [27] 黃仲欽 ,電機控制教學講義,國立臺灣科技大學,台北市,民國一百一十年。
    [28] National Instruments, “NI PXIe-1071 User Manual” Feb 2013.
    [29] National Instruments, “PXIe-8821 User Manual” Sep 2016.
    [30] National Instruments, “NI PXIe-7856R Specifications” Dec 2016.
    [31] National Instruments, “PXIe-1071 User Manual” Aug 2012
    [32] 貝為中 ,六相埋入型永磁同步馬達設計及量測,國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十二年。
    [33] 高國恒 ,六相埋入型永磁式同步電動機的電流控制策略研發,國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十二年。
    [34] 唐子元 ,兩支路電感耦合型六相換流器之研發,國立臺灣科技大學電機工程系,碩士論文,台北市,民國一百一十二年。

    無法下載圖示 全文公開日期 2028/07/13 (校內網路)
    全文公開日期 2028/07/13 (校外網路)
    全文公開日期 2028/07/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE