簡易檢索 / 詳目顯示

研究生: 許尚文
Shang-Wen Hsu
論文名稱: 六相永磁式同步電動機之設計及控制
Design and Control of Six-Phase Permanent-Magnet Synchronous Motors
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian, Yeh
吳瑞南
Ruay-Nan, Wu
王順源
none
陳慕平
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 102
中文關鍵詞: 電動機設計二臂式直流直流功率轉換器數位訊號處理器六相永磁式同步電動機Flux2D
外文關鍵詞: Two-leg boost dc-dc power converter, finite-element field analysis software FL, six-phase inverter, six-phase permanent-magnet synchro-, DSP
相關次數: 點閱:252下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計及控制六相永磁式同步電動機,並針對六相永磁式同步電動機發生部分繞組斷線故障時,亦能減速繼續運轉,以提供其運轉可靠度。在直流-直流功率轉換器方面採用二臂式昇壓型架構,將蓄電池之直流電壓48V轉換為可變之直流電壓48至100V範圍,且此電壓隨電動機之轉速而調整,可減少低速電動機抖動現象。二臂式直流-直流功率轉換器不僅可提高直流鏈電壓,亦能降低蓄電池之電流漣波,提高蓄電池使用效率及壽命。六相永磁式同步電動機採用雙三相座標系統轉換及轉子磁場導向控制,完成轉速及電流閉迴路控制,以提高效率及轉速響應。另電動機之轉子位置及速度回授採用電磁旋轉編碼器檢測位置及速度回授信號,其價格便宜、安裝容易且體積小,具有商品化的價值。
    本文利用磁路分析套裝軟體FULX2D作六相外轉式表面型永磁式同步電動機之磁路及感應電勢分析,並驗證此電機設計正確性。本系統以數位訊號處理器TMS320LF2407A為控制核心,其六相永磁式同步電動機的轉速及電流閉迴路控制及二臂式直流-直流功率轉換器之控制,皆由軟體程式完成,以減少電路元件。本文已完成250 W六相同步永磁式電動機驅動系統雛型,並由實測結果驗證本文系統之可行性。


    This thesis presents the design and implement of six-phase permanent-magnet synchronous motors. The double three-phase winding motor can be operated in lower speed when one winding breaks down. Two-leg boost dc-dc power converter is used to convert the voltage of batteries from 48V to dc-link voltage between 48V and 100V. Depending on the speed of motor, the dc-link voltage can be automatically adjusted to improve the shake of motor in low speed. It thus can not only raise dc-link voltage, but also reduce current harmonics of battery to increase its efficiency and life. Coordinate transformation and rotor-flux oriention are used in the closed-loop control of speed and current to increase the efficiency and speed response. In addition, the speed/position of rotor is detected by using cheep and small magnetic rotary encoder.
    The flux and induction voltage of synchronous motor are analyzed by the two-dimensional finite-element field analysis software FLUX2D. A digital signal processor TMS320LF2407A is used as the control core. The control of motor and power converter is accomplished by software for cost reduction. A prototype of 250W six-phase synchronous motor is developed. Simulation and experimental results are given to justify the analysis.

    目錄 中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 符號說明 VI 圖表索引 IX 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 1 1.3 系統架構及特色 2 1.4 本文大綱 3 第二章 六相永磁式同步電動機之設計及其數學模式 5 2.1 前言 5 2.2 六相永磁式同步電動機設計 5 2.2.1 電動機幾何尺寸 7 2.2.2 永久磁石材料、鐵心材料的選擇 10 2.3 六相永磁式同步電動機定子繞組接線 12 2.4 六相永磁式同步電動機磁路及電氣分析 16 2.5 六相永磁式同步電動機數學模式 26 2.5.1 六相永磁式同步電動機之電壓及電磁轉矩方程式 26 2.5.2 轉子座標系統轉換之電壓及電磁轉矩方程式 29 2.6 結語 32 第三章 六相永磁式同步電動機控制策略 33 3.1 前言 33 3.2 六相永磁式同步電動機之轉速開迴路控制 33 3.3 六相永磁式同步電動機之轉速及電流閉迴路控制 37 3.3.1 交直軸電流控制器之設計 37 3.4 繞組斷線故障判斷及其控制 41 3.5 結語 44 第四章 二臂式直流-直流功率轉換器之分析與控制 45 4.1 前言 45 4.2 二臂式直流-直流功率轉換器放電模式之分析與控制 45 4.3 二臂式直流-直流功率轉換器之實測 49 4.4 蓄電池放電模式與電動機驅動之系統整合 52 4.5 結語 52 第五章 實體製作及實測結果 53 5.1 前言 53 5.2 硬體電路製作 53 5.2.1 數位訊號處理器控制模組 53 5.2.2 電壓回授偵測電路 55 5.2.3 電流回授偵測電路 57 5.2.4 轉子之磁極角位置偵測電路 58 5.2.5 智慧型功率及電力模組及其互鎖閘極驅動電路 60 5.3 軟體程式規劃 61 5.3.1 轉速開迴路控制軟體規劃 62 5.3.2 轉速及電流閉迴路控制軟體規劃 64 5.3.3 繞組斷線故障判斷及控制策略之軟體規劃 66 5.3.4 蓄電池放電操作之控制軟體規劃 68 5.4 實測結果 70 5.5 結語 71 第六章 結論及建議 79 6.1 結論 79 6.2 建議 80 參考文獻 81 附錄A 六相永磁式同步電動機之規格及參數 85 作者簡介 86

    參考文獻

    [1] S. Tamai, M. Koyama, T. Fujii, S. Mizoguchi, and T. Kawabata,“Three Level GTO Converter-Inverter Pair System for Large Capacity Induction Motor Drive”, Conference Record of the Industry Applications Society Annual Meeting, vol. 5, pp. 45-50, 1993.
    [2] H. L. Liu and G. H. Cho, “Three Level Space Vector PWM in Low Index Modulation Region Avoiding Narrow Pulse Problem”, IEEE Transactions on Power Electronics, vol. 9, pp. 481-486, 1994.
    [3] M. C. Klabunde, Y. Zhao, and T. A. Lipo, “Current Control of A 3-Level Rectifier/Inverter Drive System”, Conference Record of the Industry Applications Society Annual Meeting, vol. 2, pp. 859-866, 1994.
    [4] H. Xudong, T. Nergaard, L. Jih-Sheng, X. Xingyi and Z. Lizhi, “A DSP based controller for high-power interleaved boost converters”, APEC ’03 Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 327-333, 2003.
    [5] X. Haiping, W. Xuhui, Q. Ermin, G. Xin and K. Li, “High Power Interleaved Boost Converter in Fuel Cell Hybrid Electric Vehicle”, IEEE International Conference on Electronic Machines and Drives, pp. 1814-1819, 2005.
    [6] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, “Instantaneous Magnetic Field Distribution In Brushless Permanent Magnet DC Motors. I. Open-Circuit Field”, IEEE Transactions on Magnetics, vol. 29, pp. 124 -135, 1993.
    [7] Z. Q. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution In Brushless Permanent Magnet DC Motors. II. Armature-Reaction Field”, IEEE Transactions on Magnetics, vol. 29, pp. 136-142, 1993.
    [8] Z. Q. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution In Brushless Permanent Magnet DC Motors. III. Effect of Stator Slotting”, IEEE Transactions on Magnetics, vol. 29, pp. 143 -151, 1993.
    [9] Z. Q. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution In Permanent Magnet Brushless DC Motors. IV. Magnetic Field On Load”, IEEE Transactions on Magnetics, vol. 29, pp. 152-158, 1993.
    [10] E. Spooner, ”Direct coupled, permanent magnet generators for wind turbine applications.” IEE Proceedings, Electric Power Application, vol. 143, pp. 1-8, 1996.
    [11] W. Wu, V. S. Ransden, T. Crawford, G. Hill, “A Low-Speed High-Torque, Direct-Drive Permanent Magnet Generator For Wind Turbines.” IEEE Industry Applications Conference , vol. 1, pp.147-154,2000.
    [12] P. Lampola, J. Perho, “Electromagnetic Analysis of A Low-Speed Permanent-Magnet Wind Generator.” International Conference, Opportunities and Advances in International Electric Power Generation, Industry Applications Conference , pp.55-58,1996.
    [13] T. F. Chan and Lie-Tong Yan, “Analysis and Performance of a Surface-mounted NdFeB Permanent-magnet A.C. Generator.” International Conference, Advances in Power System Control, Operation and Management, vol. 2, pp.11-14,1997.
    [14] T. F. Chan and Lie-Tong Yan, “Analysis and Performance of a thre-phase A.C. Generator With Inset Permanent-magnet rotor.” International Conference, Advances in Power System Control, Operation and Management, vol. 2, pp.436-440,2000.
    [15] O. C. Lyra and T. A. Lipo “Torque Density Improvement In A Six-Phase Induction Motor With Third Harmonic CurrentInjection”, IEEE Transactions on IndustryApplications, vol. 38, pp. 1351– 1360, 2002.
    [16] O. C. Lyra, and T. A. Lipo “Torque DensityImprovement In A Six-Phase Induction Motor With ThirdHarmonic Current Injection”, Conference Record of the Industry Applications Annual Meeting,2001. Conference Record of theThirty-Sixth Annual IEEE, vol. 3, pp. 1779 -1786, 2002.
    [17] M. R. Baiju, K. K. Mohapatra, R. S. Kanchan and K. Gopakumar,“A Dual Two-Level Inverter Scheme With Common Mode Voltage Elimination for An Induction Motor Drive”, IEEE Transactions onPower Electronics, vol. 19, pp. 794 – 805, 2004.
    [18] H. R. Zhang, A. V. Jouanne, S. A. Dai, K. Wallace, and Fei Wang, “Multilevel Inverter Modulation Schemes to Eliminate Common Mode Voltages”, IEEE Transactions on Industry Applications, vol. 36, pp. 1645- 1653, 2000.
    [19] R. Bojoi, M. Chiadb Caponet, G. Grieco, M. Lazzari, A. Tenconi,and F. Profumo, “Computation and Measurements of The DCLink Current In Six-Phase Voltage Source PWM Inverters for ACMotor Drives”, Power Conversion Conference, vol. 3, pp. 953 – 958, 2002.
    [20] A. V. Brazhnikov and N. N. Dovzhenko, “Control Potentials andAdvantages of Multipwase AC Drives”, Power Electronics Specialists Conference, vol. 2, pp. 2108 – 2114, 1998.
    [21] J. F. Gieras and M. Wing, Permanent Magnet Motor Technology, Design and Applications, Marcel Dekker, Inc, New York, 1997.
    [22] J. R. Hendershot and THE Miller, Design of Brushless Permanent-Magnet Motors, Magna Physics Corp, Hillboro, OH,1994
    [23] D. C. Hanselman, Brushless Permanent Magnet Motor Design, McGraw-Hill, Inc.,Singapore,1976.
    [24] Flux2D User’s guide, Cedrat, 1999.
    [25] 陳志維,“碟型永磁式線性同步電動機之設計、分析與驅動控制” 國立中山大學電機研究所博士論文,民國八十九年。
    [26] 洪士偉,“雙繞組永磁式無刷直流電動機驅動器之分析及研製” 國立台灣科技大學電機研究所碩士論文,民國九十三年。
    [27] 林俊昌,“內藏型永磁式同步機之設計、分析與量測” 國立台灣科技大學電機研究所碩士論文,民國九十三年。
    [28] L. J. Hou, Y. M. Su, and Lin Chen, “A DSP-Based VectorControl of Multiphase Induction Machine”, Proceedings of the 4th World Congress, vol. 4, pp. 2831 – 2835, 2002.
    [29] Y. Zhao, and T. A. Lipo , “Modeling and Control of A Multi-PhaseInduction Machine With Structural Unbalance”, IEEE Transactionson Energy Conversion, vol. 11, pp. 570–577, 1996.
    [30] H. S. Xu, H. A. Toliyat and L. J. Petersen, “Five-PhaseInduction Motor Drives With DSP-Based Control System”, IEEETransactions on Power Electronics, vol. 17, pp. 524-533, 2002.
    [31] V. Bukanin, F. Dughierof, S. Lupi, V. Nemkov and P. Siega, “Simulation of Multiphase Induction Heating Systems”, Computation in Electromagnetics, pp. 211 – 214, 1994.
    [32] 王俊超,“六相永磁式同步電動機驅動器之分析及設計” 國立台灣科技大學電機研究所碩士論文,民國九十四年。
    [33] 許哲嘉,“永磁式同步電動機之參數量測” 國立台灣科技大學電機研究所碩士論文,民國九十一年。
    [34] 何世賓,“凸極式永磁式同步電動機之高效率及高速控制系統研製” 國立台灣科技大學電機研究所碩士論文,民國八十九年。
    [35] 劉昌煥,交流電機控制,東華書局,民國九十年。
    [36] 陳瑩燦,“具不斷電控制之永磁式同步電動機驅動系統之研製” 國立台灣科技大學電機研究所碩士論文,民國九十四年。
    [37] TMS320LF240x DSP Controllers System And Peripherals,
    Reference Guide,2001.
    [38] “AS5040 10Bit Programmable Magnetic Rotary Encoder”
    Produced By Austria-Micro-Systems.

    QR CODE