簡易檢索 / 詳目顯示

研究生: 邱得力
De-Li Chiu
論文名稱: 小型海螺型魚缸底部清潔機器人之開發
Development of Small Conch-Shaped Underwater Aquarium-Bottom Cleaning Robot
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 陳亮光
Liang-kuang Chen
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 130
中文關鍵詞: 海螺清潔機器人積層製造APP
外文關鍵詞: Conch-shaped cleaning robot, Additive Manufacturing, APP
相關次數: 點閱:333下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 養魚是許多人的休閒娛樂,生活中隨處可見魚缸中優游的魚群,魚缸整潔影響整體觀感及魚群的生活品質,清潔魚缸常需要耗費許多時間與體力。本研究擬開發中大型魚缸底部清潔機器人,以智慧型裝置APP無線遙控機器人,發展出簡單操控的海螺清潔機器人,且沒有額外接出的線路,讓機器人可以自由的在水中行走。
    本研究延續前一代具底部清潔功能之水下機器人,並加以改良,改善其自動化模式、節省馬達運用等;海螺機器人分為三大部分:移動規劃、清潔系統、擬真外型。移動上採用履帶設計模仿海螺移動,使用兩顆直流馬達帶動履帶,透過馬達驅動版控制馬達正反轉達到移動與轉向的目的;並規劃全自動清潔模式,機器人可以在魚缸中自主避開障礙物做清潔。清潔系統中,分成清潔模組、水質過濾模組、抽水馬達模組,三模組組成水質自濾系統,可以將魚缸底沙中的髒污揚起,藉由水質過濾模組將髒污攔截與淨化,最後由機器人內部抽水馬達將乾淨的水排出。外型設計上利用手工塑模設計出海螺的外型,模仿真實海螺的外殼。
    海螺清潔機器人的設計是以3D CAD軟體來繪製零件,搭配積層製造技術來完成機器人零件製作。海螺清潔機器人整體尺寸為250×120×180mm,整體重量為894g。將所有模組組裝並進行水下清潔測試,經由結果選用最佳的清潔機構,安裝於海螺清潔機器人上;並針對海螺機器人整體清潔效果、清潔覆蓋率等做測試。


    Fishkeeping has been known as a popular hobby for many people. In order to maintain an aesthetic tank display and optimize the environment for fish, it often takes owners enormous time and effort to keep their tanks clean. The purpose of this research is to develop a robotic cleaner for large aquarium, operated through wireless technology by an APP on mobile devices. The conch-shaped cleaning robot roams in the water freely without cables.
    Based on the design of last generation bottom cleaning robot, this research aims to improve the automation control and reduce application of motors. The conch-shaped robot comprises three major topics: movement control, cleaning system, and appearance design. A caterpillar track design is adopted for the movement control to imitate the movement of a real conch. Each caterpillar track is driven by a DC motor, which is controlled by a motor driven module. The robot then moves with motors rotating in the same direction and turns while motors rotating in opposite direction. Furthermore, an automatic cleaning mode is developed so that the robot avoids obstacles automatically in the tank during operation. The cleaning system is comprised of a cleaning module, a water-filtration module, and a pump module. The three modules are combined to serve as system to maintain water quality. Dirty particles at the bottom and objects are stir up by the cleaning module and caught by the filter. Finally, the pump ejects clean water. As for the appearance, a hand-made plastic mold was made to imitate the appearance of a real conch.
    3D CAD software was used to design the parts and the parts were made with additive manufacturing technology. The size of the robot is 250×120×180mm, and the total weight is 894g. All three modules were assembled and underwent underwater tests. The best performing cleaning mechanism was then selected to be installed on the final cleaning robot. Finally, the overall performance of the robot was tested and rated based on effectiveness of cleaning and movement coverage of the tank.

    摘 要 I Abstract II 致 謝 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究方法 3 1.4 論文架構 4 第二章 文獻探討 6 2.1 水下機器人相關文獻 6 2.1.1 微小型水下機器人【1】 6 2.1.2 ABISMO【2】【3】【4】 7 2.1.3 使用智慧型手機操控機器魚【5】 8 2.2 清潔機器人相關文獻 8 2.2.1 Robo-Fisher【6】 9 2.2.2 清潔機器人覆蓋率探討【7】 9 2.2.3 市售清潔機器人【8】 10 2.3 本實驗室歷屆水下機器人相關文獻 11 2.3.1 微型水下載具 12 2.3.2 水下清潔機器人 12 2.3.3 水下寵物機器人 14 2.4 積層製造技術(Additive Manufacturing,AM) 15 2.4.1 多噴嘴立體噴印成型技術 16 2.4.2 FDM製程 18 2.4.3 SDM製程 18 第三章 機器人整體架構與設計 20 3.1 設計需求與概念 20 3.1.1 本體 21 3.1.2 外殼 23 3.2 機器人清潔機制 23 3.2.1 定點式清潔 24 3.2.2 翻沙裝置 25 3.2.3 抽水馬達裝置 25 3.3 機器人模組化 27 3.3.1 模組化 27 3.3.2 機器人模組化設計 28 3.4 清潔模組 29 3.4.1 攪拌棒式清潔機構 30 3.4.2 吸盤式清潔機構 33 3.5 移動模組 35 3.5.1 機器人移動機制與設計 36 3.5.2 機器人直線前進後退 39 3.5.3 機器人轉向機制 39 3.5.4 機器人避障機制 40 3.6 水質過濾模組 41 3.6.1 水質過濾機制與設計 41 3.6.2 物理過濾 43 3.6.2 生物過濾 43 3.7 抽水馬達模組 44 第四章 控制模組 47 4.1 APP程式 48 4.1.1 開發應用程式工具 APP Inventor【32】 48 4.1.2 APP程式觸控畫面 51 4.1.3 APP程式編寫 54 4.2 機器人控制架構 58 4.3 控制盒架構 59 4.4 性能控制 60 4.3.1前進 60 4.3.2後退 61 4.3.3轉向 62 4.3.4停止 63 4.3.5清潔 64 4.3.6自動化模式 65 4.5 零件介紹 67 第五章 清潔系統比較與模組測試 77 5.1 清潔機構實驗比較 77 5.1.1 實驗設置 77 5.1.2 吸盤式清潔機構分析 78 5.1.3 攪拌棒式清潔機構分析 80 5.2 清潔系統測試 81 5.3 機器人防水工程 82 5.3.1 馬達盒防水工程 82 5.3.2 電路盒防水測試 86 第六章 機器人原型製作與測試 87 6.1 積層製造技術(3D列印) 87 6.2.1 ProJet 89 6.2.2 SDM (Shape Deposition Manufacturing) 91 6.2.3 FDM (Fused deposition Modeling) 94 6.2 手工塑模 95 6.3 控制盒製作與組裝 97 6.5.1 控制盒設計 97 6.5.2 控制盒電路 98 6.4 機器人功能測試 100 6.4.1 運動測試 100 6.4.2 清潔測試 103 6.4.3 充電與運作時間測試 108 第七章 結論與未來展望 110 7.1 結論 110 7.2 未來方向 110 參考文獻 112

    【1】S. A. Watson and P. N. Green, “Prooulsion Systems for Micro-Autonomous Underwater Vehicles (μAUVs),” Robotics Automation and Mechatronics (RAM), 2010 IEEE Conference, pp. 435-440, 2010.
    【2】S. Ishibashi, H. Yoshida, H. Osawa, T. Inoue, J. Tahara, K. Ito, Y. Watanabe, T. Sawa, T. Hyakudome, and T. Aoki, “A ROV “ABISMO” for the Inspection and Sampling in the Deepest Ocean and Its Operation Support System” in OCEANS 2008 – MTS/IEEE Kobe Techno-OCEAN, pp. 1-6, 2008.
    【3】T. Inoue, T. Katsui, J. Tahara, K. ITtoh, H. Yoshida, S. Ishibashi, and K. Takagi, “Experimental Research on Movability Characteristic of Crawler Driven ROV”, Oceans 2008, pp.1-6, 2008.
    【4】T. Inoue, K. Takagi, and T. Shiosawa, “Flipper Type Crawler System for Running on the Irregular Seafloor”, OCEANS 2010 IEEE – Sydney, pp. 1-4, 2010.
    【5】Nicole Abaid, Jeffrey Bernhardt, Jared Alan Frank, Vikram Kapila, Daniel Kimani, Maurizio Porfiri, “Controlling a robotic fish with a smart phone” , Proceedings of the Mechatronics, pp. 491-496, 2013.
    【6】Robo-Fisher Swims With (and Cleans Up after) the Fishes, http://pinktentacle.com/2006/03/robo-fisher-swims-with-the-fishes/, 2006.
    【7】T. Palleja, M. Tresanchez, M. Teixido, J. Palacin, “Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario”, Robotics and Autonomous Systems, pp. 37-45, 2010.
    【8】iRobot, http://www.irobot.com/
    【9】沈毓珊, “微小水下載具製作” , 國立臺灣科技大學機械工程研究所碩士論文, 2005.。
    【10】賴佳宏, “微小潛水艇之設計與製作” , 國立臺灣科技大學機械工程研究所碩士論文, 2006.。
    【11】張瑞東, “具觀測能力的無線遙控微小載具之研發”, 國立臺灣科技大學機械工程研究所碩士論文, 2007.。
    【12】莊文鴻, “微小型水下清潔機器人之研發” , 國立臺灣科技大學機械工程研究所碩士論文, 2008.。
    【13】鄭友昇, “小型水下清潔機器人之改良” , 國立臺灣科技大學機械工程研究所碩士論文, 2010.。
    【14】林永澤, “創新型水下清潔機器人之研發” , 國立臺灣科技大學機械工程研究所碩士論文, 2010.。
    【15】李榮哲, “具側壁清潔功能之微小型水下機器人研發” , 國立臺灣科技大學機械工程研究所碩士論文, 2012.。
    【16】陳仲哲, “具底部清潔功能之水下機器人開發” , 國立臺灣科技大學機械工程研究所碩士論文, 2013.。
    【17】藍閔諠, “互動式寵物烏賊機器人之開發” , 國立臺灣科技大學機械工程研究所碩士論文, 2013.。
    【18】洪煜凱, “APP互動式烏賊機器人開發” , 國立臺灣科技大學機械工程研究所碩士論文, 2014.。
    【19】C. W. Hull, "Apparatus for production of three-dimensional objects by stereolithography", United States Patent and Trademark Office Websites, 1984.
    【20】P. Mikell Groover, “Fundamentals of modern manufacturing :materials, processes, and systems” , Prentice Hall, Upper Saddle River, 1996
    【21】S. Scott Crump, "Apparatus and method for creating three dimensional objects", United States Patent and Trademark Office Websites, 1989.
    【22】CUSTOMPART.NET, “http://www.custompartnet.com/wu/3d-printing”
    【23】H. Gothait, "Apparatus and Method for Three Dimensional Model Printing", U.S. Pat. 6259962, 2001.
    【24】CUSTOMPART.NET, “http://www.custompartnet.com/wu/laminated-object-manufacturing”
    【25】3D Systems, http://www.3dsystems.com/
    【26】3D Systems, http://www.3dsystems.com/
    【27】A. G. Cooper, S. Kang, J. W. Kietzman, F. B. Prinz, J. L. Lombardi, L. E. Weiss, "Automated Fabrication of Complex Molded Parts Using Mold Shape Deposition Manufacturing," Materials and Design, Vol. 20, No. 2-3, pp. 83-89, 1999.
    【28】R. Merz, F. Prinz, K. Ramaswami, K. Terk, and L. Weiss, "Shape deposition manufacturing," Proceedings of the Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, Texas, pp.1-8, 1994
    【29】C. Y. Baldwin, K. B. Clark, “Design rules : the Power of Modularity, volume 1”, The MIT Press, 2000.
    【30】鄭育明, “筆記型電腦產品研發的模組化設計之探討-以藍天電腦為例”,臺灣科技大學工業管理研究所碩士論文, 2008.
    【31】Xiaodong, Wu, Shugen Ma, “CPG-based control of serpentine locomotion of a snake-like robot”, Mechatronics, Ritsumeikan University, Japan, pp.326-334, 2010
    【32】http://appinventor.mit.edu/explore/

    QR CODE