簡易檢索 / 詳目顯示

研究生: 陳昱廷
Yu-ting Chen
論文名稱: 表面增顯拉曼散射效應中以平面波入射奈米金與奈米銀之分析
Scattering Analysis of Plane Wave Incident on Gold Nanoparticles and Silver Nanoparticles in Surface-Enhanced Effect
指導教授: 郭鴻飛
Hung-Fei Kuo
口試委員: 徐勝均
Sendren Sheng-Dong Xu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 125
中文關鍵詞: 表面增顯拉曼散射殼層隔絕奈米粒子增強拉曼光譜金屬奈米粒子全場散射場分析法
外文關鍵詞: SHINERS, SERS, FDTD, Metal nanoparticles, TFSF
相關次數: 點閱:358下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 外殼包覆之奈米粒子表面增強拉曼散射(Shell Isolated Nanoparticle Enhanced Raman Spectroscopy, SHINERS)技術是目前非常具有吸引力的方法,利用金屬的奈米粒子及奈米材料特性來強化具有辨識物質特性的拉曼散射光譜,此方法稱為表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)。然而奈米金屬粒子共振易隨外殼材料、奈米金屬尺寸、間距、波長而改變。而在生醫領域拉曼信號檢測中,常使用光波為532nm與751nm,採用奈米金屬粒子強化分子訊號。因此,本研究基於光波照測奈米金屬粒子計算分析出各種不同的條件下共振放大之功率密度,並根據有限時域法(Finite Difference Time Domain, FDTD)進行數值分析與探討,有利於節省實驗失敗所耗費的時間、材料成本。本論文採用有限時域法中之全場散射場分析法(Total Field Scattering Field, TFSF),分離入射場與散射場能量。三維奈米粒子排列時,亦採用不同偏振光剖析三維金屬奈米粒子排列時表面電漿共振區域能量分布的情況。利用偵測能量流出的截面來量測金屬共振所散射出的能量,根據金屬奈米粒子間距、金屬奈米粒子尺寸、內外殼材料、金屬奈米粒子的排列組合分析,提出能使奈米金屬粒子在入射光波長532nm與751nm產生表面電漿效應的最佳條件,來達到強化目標分子訊號。


    Shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS) is the attractive method to prevent the signal by the target molecules from the background noise in the molecules solution. Using metal nanoparticles to enhance the signal of Raman Scattering Spectrum, which can be used to indentify the target molecules, is called surface-enhance Raman scattering (SERS). However the resonance of metal nanoparticles is impacted by the choice of the shell materials, metal nanoparticle size, and separation between two nanoparticles. In order to enhance the Raman spectroscopy signal of the colon cancer in the biomedical detection, we have to select metal nanoparticles parameters which can provide the resonance at the wavelength of 532nm and 751 nm. This research uses plane wave to illuminate Au and Ag metal nanoparticles, and then analyze power density at the resonance condition. The total field scattering field (TFSF) method in the finite difference time domain (FDTD) is used to separate incidence power and scattering power for this research. In addition, different polarization parameters are used for the analysis of the scattering power density from metal nanoparticles arranged in three-dimension format. The research proposes the optimum parameters to enhance the signal at the wavelength of 532 nm and 751nm in the conclusion.

    致謝I 中文摘要II AbstractIII 目錄IV 圖目錄VII 表格目錄XI 第1章緒論1 1.1前言1 1.2文獻回顧3 1.3研究動機與目標4 1.4論文架構7 第2章表面電漿理論與奈米金屬特性8 2.1表面電漿共振8 2.2表面增顯拉曼散射13 2.3奈米金屬物理與光學特性24 2.4SHINERS理論26 2.5TFSF理論與邊界條件測試30 2.6結論35 第3章奈米金與奈米銀球體散射分析36 3.1光學模型與分析流程36 3.2奈米金屬球體38 3.3包覆外殼之奈米金屬球體42 3.4奈米金屬球體排列效應48 3.5結論52 第4章奈米金與奈米銀膠囊體散射分析54 4.1光學模型與分析流程54 4.2奈米金屬膠囊體55 4.3包覆外殼之奈米金屬膠囊體60 4.4奈米金屬膠囊體排列效應68 4.5結論77 第5章奈米金與奈米銀長方體散射分析80 5.1光學模型與分析流程80 5.2奈米金屬長方體81 5.3包覆外殼之奈米金屬長方體86 5.4奈米金屬長方體排列效應93 5.5結論102 第6章結論104 6.1數值分析結果之探討104 6.2研究貢獻105 6.3未來展望107 參考文獻108

    [1]S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, "Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings," Chemistry of Materials, vol. 17, pp. 566-572, 2005.
    [2]S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, "Biological synthesis of triangular gold nanoprisms," Nature Mater., vol. 3, pp. 482-488, 2004.
    [3]S. Siddhanta and C. Narayana, "Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing," Nanomater. nanotechnol., vol. 2, pp. 1-3, 2012.
    [4]L. H. Bac, J. S. Kim, and J. C. Kim, "Size, Optical and Stability Properties of Gold Nanoparticles Synthesized by Electrical Explosion of Wire in Different Aqueous Media," Rev. Adv. Mater. Sci., vol. 28, pp. 117-121, 2011.
    [5]E. C. E. L. Ru and P. G., Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, 2009.
    [6]C. Noguez, "Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment," The Journal of Physical Chemistry C, vol. 111, pp. 3806-3819, 2007.
    [7]S. R. Emory, W. E. Haskins, and S. Nie, "Direct Observation of Size-Dependent Optical Enhancement in Single Metal Nanoparticles," Journal of the American Chemical Society, vol. 120, pp. 8009-8010, 1998.
    [8]P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, "Surface-Enhanced Raman Spectroscopy," Annual Review of Analytical Chemistry, vol. 1, pp. 601-626, 2008.
    [9]S. P. Ravindranath, U. S. Kadam, D. K. Thompson, and J. Irudayaraj, "Intracellularly grown gold nanoislands as SERS substrates for monitoring chromate, sulfate and nitrate localization sites in remediating bacteria biofilms by Raman chemical imaging," Analytica Chimica Acta, vol. 745, pp. 1-9, 2012.
    [10]M. D. Hargreaves, K. Page, T. Munshi, R. Tomsett, G. Lynch, and H. G. M. Edwards, "Analysis of seized drugs using portable Raman spectroscopy in an airport environment—a proof of principle study," Journal of Raman Spectroscopy, vol. 39, pp. 873-880, 2008.
    [11]Skoog and H. Nieman, "Raman Spectroscopy, Principles of Instrumental Analysis 5/e," Harcourt Brace & Com., pp. 429-430, 1998.
    [12]M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman Spectra of Pyridine Adsorbed at a Silver Electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
    [13]M. Moskovits, "Surface-enhanced Raman spectroscopy: a brief retrospective.," Journal of Raman Spectroscopy, vol. 36, pp. 485-496, 2005.
    [14]F. Demming, J. Jersch, K. Dickmann, and P. I. Geshev, "Calculation of the field enhancement on laser-illuminated scanning probe tips by the boundary element method," Applied Physics B, vol. 66, pp. 593-598, 1998.
    [15]M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Applied Physics Letters, vol. 76, pp. 3130-3132, 2000.
    [16]R. M. Stockle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chemical Physics Letters, vol. 318, pp. 131-136, 2000.
    [17]B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, "Surface-enhanced and STM-tip-enhanced Raman Spectroscopy at Metal Surfaces," Single Molecules, vol. 3, pp. 285-294, 2002.
    [18]N. Hayazawa, T. Yano, H. Watanabe, Y. Inouye, and S. Kawata, "Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy," Chemical Physics Letters, vol. 376, pp. 174-180, 2003.
    [19]B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, "Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN− ions at gold surfaces," Journal of Electroanalytical Chemistry, vol. 554–555, pp. 293-299, 2003.
    [20]B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy," Physical Review Letters, vol. 92, pp. 0961011-0961014, 2004.
    [21]J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, Y. WuDe, B. Ren, Z. L. Wang, and Z. Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy," Nature, vol. 464, pp. 392-395, 2010.
    [22]J. R. Anema, J. F. Li, Z. L. Yang, B. Ren, and Z. Q. Tian, "Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy: Expanding the Versatility of Surface-Enhanced Raman Scattering," Annual Review of Analytical Chemistry, vol. 4, pp. 129-150, 2011.
    [23]S. B. Li, L. M. Li, J. R. Anema, B. Ren, J. J. Sun, and Z. Q. Tian, "Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy (SHINERS) Based on Gold-Core Silica-Shell Nanorods," Zeitschrift fur Physikalische Chemie, vol. 225, pp. 775-784, 2011.
    [24]J. Kang and H. Gu, "Probing of cancer cell apoptosis by SERS and LSCM," Proc. of SPIE, vol. 7382, pp. 738241-738244, 2009.
    [25]J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, "Plasmonic Au/Co/Au Nanosandwiches with Enhanced Magneto-optical Activity," Small, vol. 4, pp. 202-205, 2008.
    [26]K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas andPropagation, vol. 14, pp. 302-307, 1966.
    [27]A. Z. Elsherbeni and V. Demir, The finite-difference time-domain method for electromagnetics with MATLAB simulations Raleigh, 2009.
    [28]陳盈佑, "Diffraction Analysis of Optical Gratings on HKMG Process Stacks Using FDTD Method," 國立台灣科技大學碩士論文, 2012.
    [29]Z. Q. Tian, B. Ren, J. F. Li, and Z. L. Yang, "Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy," Chemical Communications, vol. 0, pp. 3514-3534, 2007.
    [30]黃永慶, "Detecting bacteria and monitoring the effects of antibiotics on bacteria using Surface-Enhanced Raman Scattering (SERS) " 國立陽明大學碩士論文, 2007.
    [31]L. Mavarani, D. Petersen, S. F. El-Mashtoly, A. Mosig, A. Tannapfel, C. Kotting, and K. Gerwert, "Spectral histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells," Analyst, vol. 138, pp. 4035-4039, 2013.
    [32]X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, "Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods," Journal of the American Chemical Society, vol. 128, pp. 2115-2120, 2006.
    [33]A. M. L. M. S. Kim, K. Chao, Y. R. Chen, I. Kim, D. E. Chan, "Multispectral Detection of Fecal Contamination on Apples based on Hyperspectral Imagery:part I. Application of Visible and Near–Infrared Reflectance Imaging," Transactions of ASAE, vol. 45, pp. 2027-2037, 2002.
    [34]X. Huang, P. Jain, I. El-Sayed, and M. El-Sayed, "Plasmonic photothermal therapy (PPTT) using gold nanoparticles," Lasers in Medical Science, vol. 23, pp. 217-228, 2008.
    [35]J. D. Alper, Physical and Practical Limits of a Biomolecular Control System Using Nanoparticles and Electromagnetic Field Irradiation: Massachusetts Institute of Technology, Department of Mechanical Engineering, 2010.
    [36]V. Uzayisenga, X. D. Lin, L. M. Li, J. R. Anema, Z. L. Yang, Y. F. Huang, H. X. Lin, S. B. Li, J. F. Li, and Z. Q. Tian, "Synthesis, Characterization, and 3D-FDTD Simulation of Ag@SiO2 Nanoparticles for Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy," Langmuir, vol. 28, pp. 9140-9146, 2012.
    [37]P. J. Feibelman, "Microscopic calculation of electromagnetic fields in refraction at a jellium-vacuum interface," Physical Review B, vol. 12, pp. 1319-1336, 1975.
    [38]M. Moskovits, K. Kneipp, and H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications. Springer, 2006.
    [39]P. P. Fang, J. F. Li, Z. L. Yang, L. M. Li, B. Ren, and Z. Q. Tian, "Optimization of SERS activities of gold nanoparticles and gold-core–palladium-shell nanoparticles by controlling size and shell thickness," Journal of Raman Spectroscopy, vol. 39, pp. 1679-1687, 2008.
    [40]X. D. Lin, J. F. Li, Y. F. Huang, X. D. Tian, V. Uzayisenga, S. B. Li, B. Ren, and Z. Q. Tian, "Shell-isolated nanoparticle-enhanced Raman spectroscopy: Nanoparticle synthesis, characterization and applications in electrochemistry," Journal of Electroanalytical Chemistry, vol. 688, pp. 5-11, 2013.
    [41]A. F. Wright and A. J. Leadbetter, "The structures of the β-cristobalite phases of SiO2 and AlPO4," Philosophical Magazine, vol. 31, pp. 1391-1401, 1975.
    [42]I. A. Aksay, J. A. Pask, and R. F. Davis, "Densities of SiO2-Al2O3 Melts," Journal of the American Ceramic Society, vol. 62, pp. 332-336, 1979.
    [43]G. A. Lager, J. D. Jorgensen, and F. J. Rotella, "Crystal structure and thermal expansion of a-quartz SiO2 at low temperature," Journal of Applied Physics, vol. 53, pp. 6751-6756, 1982.
    [44]J. A. Hriljac, M. M. Eddy, A. K. Cheetham, J. A. Donohue, and G. J. Ray, "Powder Neutron Diffraction and 29Si MAS NMR Studies of Siliceous Zeolite-Y," Journal of Solid State Chemistry, vol. 106, pp. 66-72, 1993.
    [45]R. T. Downs and D. C. Palmer, "The pressure behavior of a cristobalite," American Mineralogist, vol. 79, pp. 9-14, 1994.
    [46]R. M. a. C. C. Chris Harris, Micro reform – impacts on firms: aluminium case study. Melbourne: Industry Commission, 1998.
    [47]P. F. Paradis, "Non-Contact Thermophysical Property Measurements of Liquid and Undercooled Alumina," Jap. J. Appl. Phys., vol. 43, pp. 1496-1500, 2004.
    [48]F. Habashi, "A short history of hydrometallurgy," Hydrometallurgy, vol. 79, pp. 15-22, 2005.
    [49]L. B. Skinner, "Joint diffraction and modeling approach to the structure of liquid alumina," Phys. Rev. B, vol. 87, pp. 02420101-02420116, 2013.
    [50]Y. Fu, Optical properties of nanostructures. Pan Stanford, 2011.
    [51]A. A. Andreev, An Introduction to Hot Laser Plasma Physics. New York: Nova Science Publishers, 2000.
    [52]J. Riordon, "Fastest waves ever photographed," presented at the American Physical Society, 2006.
    [53]R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Physical Review, vol. 106, pp. 874-881, 1957.
    [54]G. X. Du, T. Mori, M. Suzuki, S. Saito, H. Fukuda, and M. Takahashi, "Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array," Applied Physics Letters, vol. 96, pp. 0819151-0819153, 2010.
    [55]S. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, "A Review on Functionalized Gold Nanoparticles for Biosensing Applications," Springer, vol. 6, pp. 491-506, 2011.
    [56]S. Maier, Plasmonics: Fundamentals and Applications. Springer, 2007.
    [57]C. Brosseau, Fundamentals of polarized light: a statistical optics approach. Wiley, 1998.
    [58]J. N. Damask, Polarization Optics in Telecommunications. Springer, 2004.
    [59]E. Collett, Field Guide to Polarization. Proc. of SPIE, 2005.
    [60]D. J. Griffiths, Introduction to electrodynamics. Prentice Hall, 1999.
    [61]P. Drude, "Zur Elektronentheorie der Metalle," Annalen der Physik, vol. 306, pp. 566-613, 1900.
    [62]G. Keresztury, "Raman Spectroscopy: Theory," in Handbook of Vibrational Spectroscopy, ed: John Wiley & Sons, Ltd, 2006.
    [63]D. R. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, 1983.
    [64]L. R. a. McCreery, Raman Spectroscopy for Chemical Analysis vol. 157. New York: Wily Interscience, 2000.
    [65]M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, pp. 163-166, 1974.
    [66]P. J. Feibelman, "Local field at an irradiated adatom on jellium—exact microscopic results," Physical Review B, vol. 22, pp. 3654-3668, 1980.
    [67]H. Raether, Surface plasmons on smooth and rough surfaces and on gratings. Springer-Verlag Berlin Heidelberg, 1988.
    [68]A. D. Boardman, Electromagnetic surface modes. New York: Wiley, 1982.
    [69]M. V. U. Kreibig, Optical properties of metal clusters. Berlin: Springer-Verlag, 1994.
    [70]Q. H. W. K. H. Su, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effect on plasmon resonances of nanogold particles," Nano Letters, vol. 3, pp. 1087-1090, 2003.
    [71]H. Xu, J. Aizpurua, M. Kall, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E, vol. 62, pp. 4318-4324, 2000.
    [72]M. Moskovits, "Surface-enhanced spectroscopy," Reviews of Modern Physics, vol. 57, pp. 783-826, 1985.
    [73]張家維, "Nano-indented Au-cavities Array Substrates induced SERS Effect for Trace Dection of Molecular Probes and Size-comparable Viruses," 國立成功大學博士論文, 2011.
    [74]R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine Series 6, vol. 4, pp. 396-402, 1902.
    [75]C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles. Wiley, 1983.
    [76]P. P. Fang, J. F. Li, Z. L. Li, B. Ren, and Z. Q. Tian, "Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness," Journal of Raman Spectroscopy, vol. 39, pp. 1679-1687, 2008.
    [77]黃志嘉, "Synthesis and Application of Hollow/Porous Nanomaterials," 國立成功大學博士論文, 2008.
    [78]G. Mie, "Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen," Annalen der Physik, vol. 330, pp. 377-445, 1908.
    [79]M. G., "Beitrgeazur optik truber medien, speziell kolloidaler metallosungen," Ann Phys . vol. 25, pp. 377-445, 1908.
    [80]F. P. Draine BT, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A., vol. 11, pp. 1491-1499, 1994.
    [81]Y. M. M. Futamata, M.Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B., vol. 107, pp. 7607-7617, 2003.
    [82]J. F. Li, S. B. Li, J. R. Anema, Z. L. Yang, Y. F. Huang, Y. Ding, Y.-F. Wu, X. S. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, "Synthesis and Characterization of Gold Nanoparticles Coated with Ultrathin and Chemically Inert Dielectric Shells for SHINERS Applications," Appl. Spectrosc., vol. 65, pp. 620-626, 2011.
    [83]J. F. Q. Ye, and L. Sun, "Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group," The Journal of Physical Chemistry B, vol. 101, pp. 8221-8224, 1997.
    [84]I. E. Sendroiu, M. E. Warner, and R. M. Corn, "Fabrication of Silica-Coated Gold Nanorods Functionalized with DNA for Enhanced Surface Plasmon Resonance Imaging Biosensing Applications," Langmuir, vol. 25, pp. 11282-11284, 2009.
    [85]D. Graham, "The Next Generation of Advanced Spectroscopy: Surface Enhanced Raman Scattering from Metal Nanoparticles," Angewandte Chemie International Edition, vol. 49, pp. 9325-9327, 2010.
    [86]Y. Lu, Y. Yin, Z. Y. Li, and Y. Xia, "Synthesis and Self-Assembly of Au@SiO2 Core-Shell Colloids," American Chemical Society, vol. 2, pp. 785-788, 2002.
    [87]J. Winkler, Titanium Dioxide: Hannover: Vincentz Network, 2003.
    [88]Y. Al-Khatatbeh, K. K. M. Lee, and B. Kiefer, "High-pressure behavior of TiO2 as determined by experiment and theory," Phys. Rev. B, vol. 13, pp. 1341141-1341149, 2009.
    [89]K. Liu, M. M. Xu, Q. H. Guo, J. L. Yao, and R. A. Gu, "Electrochemical SHINERS Spectroscopic Studies on Adsorption of 4-CNPy at TiO2 Electrodes," Chemical Journal of Chinese Universities-Chinese, vol. 33, pp. 2516-2520, 2012.

    QR CODE