簡易檢索 / 詳目顯示

研究生: 劉芝羽
Chih-Yu Liu
論文名稱: 三維有序金屬奈米管陣列應用於表面增強拉曼散射基材之研究
Metallic nanotube arrays as the surface-enhanced Raman scattering (SERS) substrate: Fabrication and properties
指導教授: 朱瑾
Jinn P. Chu
口試委員: 朱瑾
Jinn P. Chu
陳學禮
Hsuen-Li Chen
今榮東洋子
Toyoko Imae
江偉宏
Wei-Hung Chiang
盧凌
Ling Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 122
中文關鍵詞: 貴重金屬表面增強拉曼金屬奈米管陣列結晶紫羅丹明 6G殼核結構
外文關鍵詞: noble metal, SERS, metallic nanotube array, crystal violet, Rhodamine 6G, core-shell
相關次數: 點閱:322下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射光譜(Surface-enhanced Raman Scattering,SERS)因其可將原先拉曼光譜的訊號增強數倍,甚至可以偵測單一分子的訊號,使得SERS基板的相關研究在近年來受到重視。表面電漿子共振(Surface Plasmon Resonance, SPR)效應為SERS增強的重要決定條件,其受到材料、間距、尺寸及表面積等影響。本研究主題為探討不同SERS基材設計對於其拉曼增強效果的變化。透過半導體微影製程及物理氣相沈積技術,製造有序之金屬奈米管陣列,且其奈米管形狀、大小、間距皆可透過光罩設計進行調整。
    本研究將分為三大部分,首先為透過2種常見合金及1種純金屬作為奈米管之材料,分別為鈦合金(Ti64)、7075鋁合金(AA)及純金,成功透過結構之參數調整,製備出直徑0.8 ?m、高度0.7 ?m的有序圓形金屬奈米管陣列。結合前人所製備的金屬奈米管陣列(718鎳合金、青銅、SS316不銹鋼、純銅和純銀),並利用結晶紫(crystal violet, CV)作為檢測SERS的待測物,發現純銀及純金之金屬奈米管陣列具有良好的SERS增強效果,其中又以純銀的效果最為顯著;其二,透過在圓形鋯基(Zr60Cu24Al11Ni5)金屬玻璃奈米管陣列(直徑為10 ?m、高度為0.7 ?m)上沈積金奈米顆粒,有效透過貴重金屬粒子及表面積的增加來增強拉曼增強效果,在利用CV及R6G為SERS待測物下,其最低偵測極限濃度(Limit of detection, LOD) 分別可達到10^-13 M及10^-9 M,增強因子分別為1.49x 10^8及8.41x 10^5,同時亦具有良好的再現性;最後,經由重新設計光罩,製備出三角形的金屬奈米管陣列,探討陣列材料、形狀、三角形外接圓直徑大小及偵測位置對於拉曼增強之影響,其中在不同材料選擇下,即使純銀單層金屬奈米管具有較好的拉曼增強,但其陣列的產率低,存在許多倒塌的奈米管,為求增加三角形奈米管陣列之產率,而後選擇將鎢基金屬玻璃(W50Ni25B25)鍍覆為中間層,第一層及第三層為純銀,形成三明治結構,支撐其奈米管結構。在利用R6G為SERS待測物下,其最低偵測極限濃度(Limit of detection, LOD) 可達到10^-10 M,增強因子為1.38 x 10^7,同時其相對標準偏差(RSD)為5.13%,成功製備三維的三角形金屬奈米管陣列,且具有可定點量測、有序規則之結構,及良好的拉曼增強效應,證實金屬奈米管陣列可有效的吸附待測分子應用於SERS檢測之相關應用。


    Surface-enhanced Raman Scattering (SERS) can enhance the signal of the original Raman spectrum by several times and can even reach single-molecule detection. Therefore, the related research of SERS substrate has been paid more attention in recent years. Surface Plasmon Resonance (SPR) effect is an important determinant of SERS enhancement, which is affected by materials, spacing, size, and surface area. This study aims to explore the Raman enhancement effects of using different SERS substrate designs. By using the lithography process and physical vapor deposition technology, metallic nanotube arrays (MeNTAs) is then manufactured, and the shape, size, and spacing of the nanotubes can be adjusted through the mask design.
    This research will be divided into three parts. Firstly, two common alloys and one pure metal are used as the material of nanotubes, namely titanium alloy (Ti64), 7075 aluminum alloy (AA), and pure gold. After the adjustment of deposition parameters, an ordered circular MeNTA with a diameter of 0.8 ?m and a height of 0.7 ?m was prepared. Combining the MeNTA (718 nickel alloy, bronze, SS316 stainless steel, pure copper, and pure silver) prepared by the predecessors, and using crystal violet (CV) as the SERS probe, pure silver, and pure gold MeNTAs was shown good SERS enhancement effect, and the effect of pure silver is the most significant. Secondly, by depositing gold nanoparticles on the circular Zr-based (Zr60Cu24Al11Ni5) metallic glass nanotube array (diameter 10 ?m, height 0.7 ?m) can effectively enhance the Raman enhancement effect owing to the properties of noble metal nanoparticles and the increment of surface area. Under the use of CV and R6G as SERS probe, the limit of detection of AuNPs@MeNTA can be reached 10^-13 M and 10^-9 M, respectively, the enhancement factors are 1.49x 10^8 and 8.41x 10^5, and it also shows good reproducibility. Finally, through the redesign of the mask, a triangular MeNTA is prepared, and the following study is to discuss the Raman effect of material, shape, diameter of triangular nanotube, and detection position. Among them, by discussing the Raman effect of different compositions, even if pure silver monolayer MeNTA has a better response to Raman enhancement, the yield of its array is low, indicating many nanotubes are collapsed. In order to increase the yield of the triangular MeNTA, W-based metallic glass (W50Ni25B25) is then selected as the buffer layer., and the first and third layers are made of pure silver to form a sandwich structure, which can support the structure of nanotubes. R6G was selected as the Raman probe for triangular W-TFMG@MeNTA, the limit of detection can reach as low as 10-10 M, the enhancement factor is 1.38 x 10^7, and its relative standard deviation (RSD) is 5.13%. The three-dimensional triangular MeNTAs provides a sensitive SERS substrate with a well-ordered structure, and also can reach fixed-point measurement, indicating that MeNTA can effectively adsorb the molecules to apply in SERS application.

    摘要 ............................................................................................................................................... I Abstract.........................................................................................................................................II Acknowledgements .................................................................................................................... IV Content......................................................................................................................................... V List of Figures.............................................................................................................................IV List of Tables ............................................................................................................................... X Chapter 1 Introduction............................................................................................................... 1 1.1 Objectives of study ........................................................................................................ 2 Chapter 2 Literature Review ..................................................................................................... 3 2.1 Plasmonics ..................................................................................................................... 3 2.1.1 Surface plasmon resonance (SPR)...................................................................... 3 2.1.2 Localized surface plasmon resonance (LSPR) ................................................... 4 2.2 Raman spectroscopy ...................................................................................................... 5 2.3 Surface-Enhanced Raman Scattering (SERS) ............................................................... 7 2.3.1 Electromagnetic enhancement (EM) .................................................................. 8 2.3.2 Chemical enhancement (CM) ............................................................................. 9 2.4 Substrate types for SERS enhancement....................................................................... 10 2.4.1 Nanoparticles .................................................................................................... 11 2.4.2 Three-dimensional nanostructure ..................................................................... 11 2.4.3 Core-shell structure........................................................................................... 12 2.4.4 Periodic nanostructure ...................................................................................... 14 2.5 The importance of nanoscale noble metal in SERS..................................................... 15 2.6 Common SERS probes ................................................................................................ 17 2.6.1 Potential application of Crystal violet .............................................................. 17 2.6.2 Potential application of Rhodamine 6G............................................................ 18 V 2.7 Metallic Glass Nanotube Arrays (MGNT arrays)........................................................ 19 2.7.1 Unique properties of MGNT arrays.................................................................. 22 2.7.2 MGNT arrays applied in SERS application...................................................... 24 2.8 Metallic Nanotube Arrays (MeNTAs) ......................................................................... 26 Chapter 3 Experimental Procedure.......................................................................................... 33 3.1 Metallic Nanotube arrays (MeNTAs) fabrication of Ti64, AA and pure Au ............... 33 3.1.1 Substrate and photoresist preparations ............................................................. 35 3.1.2 Metallic thin-film deposition (laminated layers) .............................................. 36 3.1.3 Photoresist removal .......................................................................................... 37 3.2 Fabrication of MeNTAs covered in noble metal nanoparticles (AuNPs@MeNTAs) . 37 3.2.1 Substrate and photoresist preparations ............................................................. 39 3.2.2 Thin-film Metallic Glass (TFMG) deposition .................................................. 39 3.2.3 Synthesis of gold nanoparticles ........................................................................ 39 3.2.4 Photoresist removal .......................................................................................... 40 3.3 Fabrication of core-shell triangular MeNTAs.............................................................. 40 3.3.1 Substrate and photoresist preparation ............................................................... 42 3.3.2 Deposition of core-shell triangular MeNTAs ................................................... 43 3.3.3 Photoresist removal .......................................................................................... 44 3.4 Characterization of thin films ...................................................................................... 44 3.4.1 Crystallographic analysis (XRD)...................................................................... 44 3.5 Characterization of MeNTAs....................................................................................... 44 3.5.1 Composition analysis and TEM specimen preparation (FIB) .......................... 45 3.5.2 Wettability ......................................................................................................... 45 3.5.3 Elemental surface analysis (AES) .................................................................... 46 3.5.4 Microstructural analysis (TEM) ....................................................................... 46 3.6 Raman spectroscopy .................................................................................................... 46 VI 3.6.1 Adsorption of Crystal violet and Rhodamine 6G onto AuNPs@MeNTAs ...... 47 3.6.2 Adsorption of Rhodamine 6G onto triangular MeNTAs .................................. 47 Chapter 4 Results and Discussion ........................................................................................... 48 4.1 Circular MeNTAs of Ti64, AA and pure Au ................................................................ 48 4.1.1 Surface morphology (SEM).............................................................................. 48 4.1.2 Wettability (Water contact angle) ..................................................................... 49 4.1.3 Crystallographic analysis (XRD)...................................................................... 54 4.1.4 Auger analysis (Auger) ..................................................................................... 55 4.1.5 Microstructural analysis (TEM) ....................................................................... 58 4.1.6 Raman spectra for MeNTAs and films ............................................................. 67 4.2 Circular MeNTAs covered in noble metal nanoparticles (AuNPs@MeNTAs) ........... 68 4.2.1 Surface morphology (SEM) of AuNPs@MeNTAs .......................................... 68 4.2.2 Chemical composition analysis (EDS) of AuNPs@MeNTAs .......................... 71 4.2.3 Crystallographic analysis (XRD) of AuNPs@MeNTAs................................... 72 4.2.4 Raman spectra of different structure effect....................................................... 73 4.2.5 Limit of detection (LOD) of AuNPs@MeNTAs .............................................. 74 4.2.6 Reproducibility of AuNPs@MeNTAs .............................................................. 77 4.2.7 Raman mapping of AuNPs@MeNTAs ............................................................. 79 4.3 Core-shell triangular MeNTAs .................................................................................... 80 4.3.1 Surface morphology (SEM).............................................................................. 80 4.3.2 Crystallographic analysis (XRD)...................................................................... 84 4.3.3 Raman spectra of different nanotube shapes .................................................... 85 4.3.4 Raman spectra of triangular MeNTAs with different detection areas .............. 86 4.3.5 Raman spectra of triangular MeNTAs with different compositions ................. 88 4.3.6 Raman spectra of triangular MeNTAs with different outer diameters ............. 91 4.3.7 Limit of detection (LOD) of core-shell triangular MeNTAs ............................ 93 VII 4.3.8 Reproducibility of core-shell triangular MeNTAs............................................ 96 4.3.9 Raman mapping of core-shell triangular MeNTAs........................................... 97 Chapter 5 Conclusions............................................................................................................. 99 References ................................................................................................................................ 101

    1. Lausted, C., et al., SPR imaging for high throughput, label-free interaction analysis. Combinatorial chemistry & high throughput screening, 2009. 12(8): p. 741-751.
    2. Sharma, B., et al., SERS: Materials, applications, and the future. Materials Today, 2012. 15(1): p. 16-25.
    3. Chu, J.P., K.-W. Tseng, and C.-Y. Liu, Large-area alloy nanotube arrays with highly-ordered periodicity: Fabrication and characterization. Materials & Design, 2021. 209: p. 109998.
    4. Lu, Y.C., et al., Wafer-scale SERS metallic nanotube arrays with highly ordered periodicity. Sensors and Actuators B-Chemical, 2021. 329: p. 7.
    5. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem, 2007. 58: p. 267-97.
    6. Fernández-Domínguez, A.I., F.J. García-Vidal, and L. Martín-Moreno, Unrelenting plasmons. Nature Photonics, 2017. 11(1): p. 8-10.
    7. Raschke, G., et al., Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering. Nano Letters, 2003. 3(7): p. 935-938.
    8. Haes, A.J., et al., Detection of a Biomarker for Alzheimer's Disease from Synthetic and Clinical Samples Using a Nanoscale Optical Biosensor. Journal of the American Chemical Society, 2005. 127(7): p. 2264-2271.
    9. Zhu, X. and T. Gao, Chapter 10 - Spectrometry, in Nano-Inspired Biosensors for Protein Assay with Clinical Applications, G. Li, Editor. 2019, Elsevier. p. 237-264.
    10. Fong, K.E. and L.-Y.L. Yung, Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013. 5(24): p. 12043-12071.
    11. Barnes, W.L., A. Dereux, and T.W. Ebbesen, surface plasmon subwavelength. 2003.
    12. Zeng, Y., et al., Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability. Nanophotonics, 2017. 6(5): p. 1017-1030.
    13. Masson, J.F., Portable and field-deployed surface plasmon resonance and plasmonic sensors. Analyst, 2020. 145(11): p. 3776-3800.
    14. Smekal,A.,ZuschriflenundvorlaufigeMitteilungen.Naturwissenschaften,1923.11:p.873-875. 15. RAMAN, C.V. and K.S. KRISHNAN, A New Type of Secondary Radiation. Nature, 1928. 121: p. 501-502.
    16. Jones, R.R., et al., Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett, 2019. 14(1): p. 231.
    17. Xu, Z., et al., Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining. Micromachines (Basel), 2018. 9(7).
    18. Bumbrah, G.S. and R.M. Sharma, Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences, 2016. 6(3): p. 209-215.
    19. Schlucker, S., Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed Engl, 2014. 53(19): p. 4756-95.
    101
    20. Langer, J., et al., Present and Future of Surface-Enhanced Raman Scattering. Acs Nano, 2020. 14(1): p. 28-117.
    21. Zhang, C., et al., SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B-Chemical, 2018. 258: p. 163-171.
    22. Chen, S.N., et al., Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering. Carbon, 2015. 81: p. 767-772.
    23. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
    24. Kneipp, K., et al., Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 1997. 78(9): p. 1667-1670.
    25. Kim, J., et al., Study of Chemical Enhancement Mechanism in Non-plasmonic Surface Enhanced Raman Spectroscopy (SERS). Frontiers in Chemistry, 2019. 7: p. 7.
    26. Ding, S.Y., et al., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017. 46(13): p. 4042-4076.
    27. Ding, S.-Y., et al., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 2016. 1(6): p. 16021.
    28. Brolo, A.G., D.E. Irish, and B.D. Smith, Applications of surface enhanced Raman scattering to the study of metal-adsorbate interactions. Journal of Molecular Structure, 1997. 405(1): p. 29-44. 29. Clark, R.J.H. and T.J. Dines, Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. New Analytical Methods (27). Angewandte Chemie International Edition in English, 1986. 25(2): p. 131-158.
    30. Waiwijit, U., et al., Fabrication of Au-Ag nanorod SERS substrates by co-sputtering technique and dealloying with selective chemical etching. Applied Surface Science, 2020. 530: p. 9.
    31. Wang, Y.F., et al., Effect of TiO2 arrays on surface enhanced Raman scattering (SERS) performance for Ag/TiO2 substrates. Nanotechnology, 2021. 32(7): p. 9.
    32. Lin, Y., et al., Surface-enhanced resonance Raman scattering of MoS2 quantum dots by coating Ag@MQDs on silver electrode with nanoscale roughness. Journal of Luminescence, 2021. 230: p. 6. 33. Pristinski, D., et al., In situ SERS study of Rhodamine 6G adsorbed on individually immobilized Ag nanoparticles. Journal of Raman Spectroscopy, 2006. 37(7): p. 762-770.
    34. Chen, B., et al., Green Synthesis of Large-Scale Highly Ordered Core@Shell Nanoporous Au@Ag Nanorod Arrays as Sensitive and Reproducible 3D SERS Substrates. ACS Applied Materials & Interfaces, 2014. 6(18): p. 15667-15675.
    35. Wang, K., et al., Shell thickness-dependent Au@Ag nanoparticles aggregates for high- performance SERS applications. Talanta, 2019. 195: p. 506-515.
    36. Ma, Y., et al., Au@Ag Core−Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties. ACS Nano, 2010. 4(11): p. 6725-6734.
    37. Lin, D., et al., Large-Area Au-Nanoparticle-Functionalized Si Nanorod Arrays for Spatially Uniform Surface-Enhanced Raman Spectroscopy. ACS Nano, 2017. 11(2): p. 1478-1487.
    38. Willets, K. and K. Mayer, 16 - Surface-enhanced Raman scattering (SERS) as a characterization 102

    method for metal-organic interactions, in Handbook of Organic Materials for Electronic and Photonic Devices (Second Edition), O. Ostroverkhova, Editor. 2019, Woodhead Publishing. p. 529- 549.
    39. Cecchini, M.P., et al., Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature materials, 2013. 12(2): p. 165-171.
    40. Huang, Z., et al., Improved SERS performance from Au nanopillar arrays by abridging the pillar tip spacing by Ag sputtering. Advanced Materials, 2010. 22(37): p. 4136-4139.
    41. Hatab, N.A., et al., Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano letters, 2010. 10(12): p. 4952-4955.
    42. Ko, H., S. Singamaneni, and V.V. Tsukruk, Nanostructured Surfaces and Assemblies as SERS Media. Small, 2008. 4(10): p. 1576-1599.
    43. Liu, C., et al., Suspended 3D AgNPs/CNT nanohybrids for the SERS application. Applied Surface Science, 2019. 487: p. 1077-1083.
    44. Hasna, K., et al., Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. Nano Research, 2016. 9(10): p. 3075-3083.
    45. Pande, S., et al., Synthesis of normal and inverted gold− silver core− shell architectures in β- cyclodextrin and their applications in SERS. The Journal of Physical Chemistry C, 2007. 111(29): p. 10806-10813.
    46. Cui, Y., et al., Synthesis of AgcoreAushellBimetallic Nanoparticles for Immunoassay Based on Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry B, 2006. 110(9): p. 4002- 4006.
    47. Yang, Y., et al., Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface- enhanced Raman scattering. Scripta Materialia, 2008. 58(10): p. 862-865.
    48. García, M.A., Surface plasmons in metallic nanoparticles: fundamentals and applications. Journal of Physics D: Applied Physics, 2011. 44(28): p. 283001.
    49. Cai, J., et al., Au nanoparticle-grafted hierarchical pillars array replicated from diatom as reliable SERS substrates. Applied Surface Science, 2021. 541: p. 7.
    50. Šakalys, R., K.W. Kho, and T.E. Keyes, A reproducible, low cost microfluidic microcavity array SERS platform prepared by soft lithography from a 2 photon 3D printed template. Sensors and Actuators B: Chemical, 2021. 340: p. 129970.
    51. Maheshwari, V., J. Kane, and R.F. Saraf, Self‐Assembly of a Micrometers‐Long One‐ Dimensional Network of Cemented Au Nanoparticles. Advanced Materials, 2008. 20(2): p. 284-287. 52. Alivisatos, A.P., Semiconductor clusters, nanocrystals, and quantum dots. science, 1996. 271(5251): p. 933-937.
    53. An, B., et al., Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Frontiers of Chemical Science and Engineering, 2016. 10(3): p. 360-382. 54. Le Ru, E.C. and P.G. Etchegoin, Chapter 3 - Introduction to plasmons and plasmonics, in Principles of Surface-Enhanced Raman Spectroscopy, E.C. Le Ru and P.G. Etchegoin, Editors. 2009,
    103

    Elsevier: Amsterdam. p. 121-183.
    55. Xia, Y. and N.J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS bulletin, 2005. 30(5): p. 338-348.
    56. Haynes, C.L., A.D. McFarland, and R.P. Van Duyne, Surface-Enhanced Raman Spectroscopy. Analytical Chemistry, 2005. 77(17): p. 338 A-346 A.
    57. Lee, P. and D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols. The Journal of Physical Chemistry, 1982. 86(17): p. 3391-3395.
    58. Le Ru, E.C. and P.G. Etchegoin, Chapter 2 - Raman spectroscopy and related optical techniques, in Principles of Surface-Enhanced Raman Spectroscopy, E.C. Le Ru and P.G. Etchegoin, Editors. 2009, Elsevier: Amsterdam. p. 29-120.
    59. Jensen, L. and G.C. Schatz, Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
    60. Violet, B., Crystal violet. Brilliant Green, Mal.
    61. Erdely, H. and P. Sanders, Gentian violet. p. 39-59.
    62. Maley, A.M. and J.L. Arbiser, Gentian violet: a 19th century drug re-emerges in the 21st century.
    Experimental dermatology, 2013. 22(12): p. 775-780.
    63. JuáCho, S., K. KumaráMaiti, and C. YawáFu, Combinatorial synthesis of a triphenylmethine library and their application in the development of surface enhanced Raman scattering (SERS) probes. Chemical communications, 2010. 46(5): p. 722-724.
    64. Kneipp, J., et al., Optical probing and imaging of live cells using SERS labels. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009. 40(1): p. 1-5. 65. Miyah, Y., et al., Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017. 23: p. 20-28.
    66. Sun, L., et al., Composite organic− inorganic nanoparticles as Raman labels for tissue analysis. Nano Letters, 2007. 7(2): p. 351-356.
    67. Yarborough, J., CW dye laser emission spanning the visible spectrum. Applied Physics Letters, 1974. 24(12): p. 629-630.
    68. Zhang, C., et al., SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Optics express, 2015. 23(19): p. 24811-24821.
    69. He, X.N., et al., Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 2012. 23(20): p. 205702.
    70. Chu, J.P., et al., Non-stick syringe needles: Beneficial effects of thin film metallic glass coating. Scientific Reports, 2016. 6(1): p. 31847.
    71. Chuang, C.-Y., et al., Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass. Surface and Coatings Technology, 2013. 215: p. 312-321.
    72. Chen, J.-K., et al., Metallic glass nanotube arrays: Preparation and surface characterizations.
    104

    Materials Today, 2018. 21(2): p. 178-185.
    73. Chen, W.-T., et al., Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass. Nanoscale, 2018. 10(3): p. 1366-1375.
    74. Lu, Y.-C., Metallic-Glass Nanotube Arrays as a Surface-Enhanced Raman Scattering (SERS)- active Substrate for Crystal Violet Adsorption. 2019, National Taiwan University of Science and Technology.
    75. Tseng, K.-W., Elemental metal and alloy nanotube arrays with highly ordered periodicity: Fabrication and characterizations. 2020, National Taiwan University of Science and Technology. 76. Madge, S., et al., Novel W-based metallic glass with high hardness and wear resistance. Intermetallics, 2014. 47: p. 6-10.
    77. Yang, Y.-X. and J.P. Chu, Cost-effective large-area Ag nanotube arrays for SERS detections: Effects of nanotube geometry. Nanotechnology, 2021.
    78. Fang, Y., N.-H. Seong, and D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 2008. 321(5887): p. 388-392.
    79. Alabastri, A., et al., Extraordinary light-induced local angular momentum near metallic nanoparticles. ACS nano, 2016. 10(4): p. 4835-4846.
    80. Chang, S.-Y., et al., Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Scientific reports, 2021. 11(1): p. 1-13.
    81. Chang, C., et al., Fatigue property improvements of ZK60 magnesium alloy: Effects of thin film metallic glass. Thin Solid Films, 2016. 616: p. 431-436.
    82. Mittal, A., et al., Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of colloid and interface science, 2009. 337(2): p. 345- 354.
    83. Wang, C., et al., Surface Plasmon Excited on Imprintable Thin-Film Metallic Glasses for Surface-Enhanced Raman Scattering Applications. ACS Applied Nano Materials, 2018. 1(2): p. 908- 914.
    84. Li, T., et al., Self-assembly of the stretchable AuNPs@MoS2@GF substrate for the SERS application. Applied Surface Science, 2017. 423: p. 1072-1079.
    85. Senapati, S., et al., SERS active Ag encapsulated Fe@ SiO2 nanorods in electromagnetic wave absorption and crystal violet detection. Environmental research, 2014. 135: p. 95-104.
    86. Shi, G., et al., Synthesis of flexible and stable SERS substrate based on Au nanofilms/cicada wing array for rapid detection of pesticide residues. Optics Communications, 2018. 425: p. 49-57. 87. Xu, S., et al., Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high- density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst, 2021. 146(15): p. 4858-4864.
    88. Shi, G., et al., A novel natural SERS system for crystal violet detection based on graphene oxide wrapped Ag micro-islands substrate fabricated from Lotus leaf as a template. Applied Surface Science, 2018. 459: p. 802-811.
    89. Li, M., et al., The cascade structure of periodic micro/nanoscale Au nano-islands @ Ag-frustum
    105

    arrays as effective SERS substrates. Vacuum, 2020. 175: p. 109265.
    90. Fu, Q., et al., Ni/Au hybrid nanoparticle arrays as a highly efficient, cost-effective and stable SERS substrate. RSC Advances, 2015. 5(8): p. 6172-6180.

    無法下載圖示 全文公開日期 2026/08/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE