簡易檢索 / 詳目顯示

研究生: 潘巧昕
Chiao-Hsin Pan
論文名稱: 數位雙生系統於搖臂式拋光墊修整之分析與預測研究
Study on Digital Twin System for Analysis and Prediction of Swing-Arm Pad Dressing Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Choung-Lii Chao
劉顯光
Hsien-Kuang Liu
楊棧雲
Chan-Yun Yang
王雪明
Hsueh-Ming Wang
田維欣
Wei-Hsin Tien
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 149
中文關鍵詞: 數位雙生即時監控動態量測拋光墊修整拋光墊移除率
外文關鍵詞: Digital Twin, Real-time Monitoring, Dynamic Measuring, Pad Dressing, Pad Cutting Rate (PCR)
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為建立搖臂式拋光墊修整之數位雙生系統,整合搖臂控制模組及動態量測模組透過Modbus通訊協議連接實體搖臂與應用程式,可收集搖臂之實時資料,並透過彩色共軛焦感測器架設於搖臂上,以近似阿基米德螺線線方式達到等距且大範圍量測,利用數位雙生系統(Digital Twin System, DTS)監控及量測分析其表面訊號,預測拋光墊修整移除率(Pad Cutting Rate, PCR)。本研究分為三部分進行,首先建立數位雙生應用程式連接實體機台,達到即時監控製程,並以實際搖臂資料計算修整時在拋光墊各區之停留時間及實際下壓力對應之鑽石有效壓痕深度建立拋光墊移除率模型,實驗A透過變速修整軌跡模擬程式,模擬修整軌跡之分布,並藉由壓克力板進行修整軌跡驗證。實驗B透過等速修整實驗及變速修整實驗探討不同參數對於拋光墊之影響,並且將數位雙生系統與實際量測之修整移除率結果相互驗證,兩者於不同參數下最大誤差為19.6 %,均勻度最大誤差為9.56 %。且修整軌跡中,鑽石在內圈區域產生過度磨耗的情況,呈現內圈移除率較外圈高之情形,透過模擬修整參數,得到模擬之最佳參數4/8/10 deg/s,實驗結果顯示透過調節搖臂角速度可以達到整個拋光墊較為穩定之移除率及拋光墊均勻度,並以最佳修整參數4/8/10 deg/s作為實驗C之修整參數,進行12吋Oxide Wafer拋光實驗及相關性分析,透過變角速度修整後,晶圓薄膜厚度呈均勻下降,可提高晶圓移除均勻性57 %,並且對於拋光墊表面性能指標中與承載比之儲存區(Rpk)有高度相關(0.91)、與儲存區(Rvk)有高度相關(0.71)。


This study establishes a digital twin system of swing-arm pad dressing process, which integrates the swing-arm control model and dynamic measurement model. Collect swing-arm data with sensors through the Modbus communication protocol to obtain real-time data. The study is conducted in three phases. First, established a digital twin application for real-time monitoring of the physical machine to achieve the integration of the virtual world and physical world. The digital twin system analyzes and predicts the pad cutting rate (PCR) and pad uniformity (PU) through monitoring and measuring the surface signal. The model calculates duration time in different zones of pad and effective cutting depth of real-time pressure to predict PCR. Experiment A simulates the distribution of dressing locus and uses OpenCV to validation. Experiment B discusses the effects of various parameters on polishing pad and PCR result was verified by digital twin system and DPMS. The PCR maximum error is 19.6% and the PU maximum error is 9.56%. Experimental results show that adjusting the angular velocity of swing-arm not only can achieve better flatness and uniformity of pad but also the wafer removal uniformity in the CMP process can be improved by 57%. Discuss the correlation between MRR and bearing area ratio, the result shows that highly related to Rpk and Rvk.

摘要 I AbstractII 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 符號表 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 5 第二章 文獻回顧 7 2.1 拋光墊性能 7 2.2 拋光墊修整 17 2.3 數位雙生之應用 25 2.4 文獻回顧統整 31 第三章 數位雙生系統架構與分析方法 32 3.1 拋光墊修整之數位雙生系統 32 3.1.1 系統架構 33 3.1.2 Modbus通訊協定 35 3.1.3 動態量測系統量測(DPMS) 37 3.1.4 彩色共軛焦感測器原理 38 3.1.5 搖臂量測系統軌跡方程式 40 3.1.6 系統驗證與分析結果 43 3.2 動態量測訊號分析方法 45 3.2.1 快速傅立葉轉換(Fast Fourier Transform, FFT) 45 3.2.2 IIR濾波器 46 3.3 拋光墊移除率預測模型 47 3.3.1 修整移除率模型 48 3.3.2 鑽石壓痕深度模型 49 3.4 拋光墊指標 52 3.4.1 承載面積比(Bearing Area Ratio, BAR) 53 3.5 近似阿基米德螺旋線 55 3.5.1 近似阿基米德螺旋線量測驗證 61 第四章 修整參數模擬與實驗規劃 64 4.1 重疊面原理 64 4.1.1 修整參數模擬 64 4.2 實驗設備與耗材 66 4.2.1 鑽石修整碟 66 4.2.2 拋光墊 68 4.2.3 晶圓 69 4.2.4 拋光液 69 4.3 量測設備 72 4.4 實驗規劃 74 4.4.1 實驗A 修整軌跡驗證 75 4.4.2 實驗B 修整實驗 76 4.4.3 實驗C 拋光實驗 77 第五章 修整實驗與拋光墊移除率 78 5.1 修整軌跡模擬與驗證實驗(實驗A) 78 5.1.1 搖臂修整軌跡模擬 78 5.1.2 機台主軸校正與馬達扭矩分析 81 5.1.3 修整軌跡實驗 84 5.1.4 實驗與模擬結果比對 86 5.2 修整實驗 (實驗B) 88 5.2.1 等角速度修整實驗(實驗B-1) 88 5.2.2 變角速度修整實驗(實驗B-2) 94 5.3 拋光實驗(實驗C) 105 5.4 綜合結果與討論 114 第六章 結論與建議 115 6.1 結論 115 6.2 建議 117 參考文獻 118 附錄A 實驗量測設備 122 附錄B 實驗設備及規格 123 附錄C 晶圓粗糙度量測結果 126 附錄D 2D粗糙度計算說明 128

[1] Negri, Elisa, Luca Fumagalli, and Marco Macchi. "A review of the roles of digital twin in CPS-based production systems." Procedia manufacturing 11 (2017): 939-948.
[2] Li, Z. C., Emmanuel A. Baisie, and X. H. Zhang. "Diamond Disc Pad Conditioning in Chemical Mechanical Planarization (CMP): A Mathematical Model to Predict Pad Surface Shape." International Manufacturing Science and Engineering Conference. Vol. 44304. 2011.
[3] 王柏凱, "雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎行維度和承載比分析," 碩士論文, 國立臺灣科技大學, 2013.
[4] 黃星豪, "藍寶石晶圓拋光加工之摩擦力與拋光墊機械性質分析研究," 碩士論文, 國立臺灣科技大學, 2013.
[5] 溫禪儒, "單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2014.
[6] 蔡明城, "開發線上監控量測方法與系統應用於拋光墊性能水準分 析之研究," 碩士論文, 國立臺灣科技大學, 2016.
[7] 傅彥綺, "拋光墊線上量測系統於修整性能分析與銅化學機械拋光之相關性研究," 碩士論文, 國立臺灣科技大學, 2017.
[8] 王詩堯, "拋光墊性能分析於淺溝槽隔離化學機械拋光製程研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2018.
[9] 陳俊臣, "線上拋光墊性能監測之彩色共軛焦系統取樣分析研究," 碩士論文, 國立臺灣科技大學, 2018.
[10] Pham, Q.-P. and C.-C.A. Chen, "Study on pad cutting rate and surface roughness in diamond dressing process. " International Journal of Precision Engineering and Manufacturing, 2017. 18(12): p. 1683-1691.
[11] Lee, H. and S. Lee, "Investigation of pad wear in CMP with swing-arm conditioning and uniformity of material removal. " Precision Engineering, 2017. 49: p. 85-91.
[12] Khanna, A. J., et al. "Methodology for pad conditioning sweep optimization for advanced nodes." Microelectronic Engineering 216 (2019): 111101.
[13] 廖偉程, "動態量測拋光墊系統於修整性能與銅膜晶圓化學機械平坦化之相關性研究," 碩士論文, 國立臺灣科技大學, 2020.
[14] 李人傑, "運用動態量測系統進行拋光墊之修整模型建立與線上量測分析研究," 博士論文, 國立臺灣科技大學, 2021.
[15] 廖秉鋐, "銅膜化學機械拋光之軟拋墊磨耗與性能分析," 碩士論文, 國立臺灣科技大學, 2021.
[16] 楊賴友, "修整力量分析於聚氨酯拋光墊修整移除率與表面形貌模擬驗證研究," 碩士論文, 國立臺灣科技大學, 2021.
[17] Negri, Elisa, Luca Fumagalli, and Marco Macchi. "A review of the roles of digital twin in CPS-based production systems." Procedia manufacturing 11 (2017): 939-948.
[18] Schützer, Klaus, et al. "Contribution to the development of a Digital Twin based on product lifecycle to support the manufacturing process." Procedia CIRP 84 (2019): 82-87.
[19] Qi, Qinglin, et al. "Digital twin service towards smart manufacturing." Procedia Cirp 72 (2018): 237-242.
[20] Pires, Flávia, et al. "Digital twin experiments focusing virtualisation, connectivity and real-time monitoring." 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS). Vol. 1. IEEE, 2020.
[21] Hänel, Albrecht, et al. "The development of a digital twin for machining processes for the application in aerospace industry." Procedia CIRP 93 (2020): 1399-1404.
[22] Liu, Jinfeng, et al. "A digital twin-driven approach towards traceability and dynamic control for processing quality." Advanced Engineering Informatics 50 (2021): 101395.
[23] Thomas, George. "Introduction to the modbus protocol." The Extension 9.4 (2008): 1-4.
[24] Oliver, Warren Carl, and George Mathews Pharr. "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments." Journal of materials research 7.6 (1992): 1564-1583.
[25] Pawlus, Pawel, et al. "Material ratio curve as information on the state of surface topography—A review." Precision Engineering 65 (2020): 240-258.
[26] Chen, Chao-Chang A., and Quoc-Phong Pham. "Study on diamond dressing for non-uniformity of pad surface topography in CMP process." The International Journal of Advanced Manufacturing Technology 91.9 (2017): 3573-3582.
[27] 宋政潮, "化學機械平坦化之行星式及搖臂式動態模型對拋光墊修整分析與影響研究," 碩士論文, 國立臺灣科技大學, 2022.

無法下載圖示 全文公開日期 2024/09/26 (校內網路)
全文公開日期 2024/09/26 (校外網路)
全文公開日期 2024/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE