簡易檢索 / 詳目顯示

研究生: 鄭貴仲
Kuei-Chung Cheng
論文名稱: AlCoCrFeNi高熵合金粉末性質及其熱噴塗塗層開發之研究
Study on the Properties of Atomized AlCoCrFeNi High-Entropy Alloy Powder and its thermal-sprayed coatings
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 林宜弘
I-Hung Lin
陳建仲
Chien-Chon Chen
曾堯宣
Yao-Hsuan Tseng
沈育安
Yu-An Shen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 103
中文關鍵詞: 高熵合金氣體霧化法熱噴塗製程
外文關鍵詞: High-entropy alloys, gas atomization, thermal spray
相關次數: 點閱:232下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究中,將運用實驗室於金屬材料研發的成果,結合工業界廣泛應用的電漿熱噴塗技術,持續開發各種多主元高熵合金材料之熱噴塗塗層製造能力。熱噴塗技術為工業界常見的重要製程技術,雖然材料研究不斷的創新,但從事研究熱噴塗製程技術開發的研究人員卻為數不多,讓新材料的推廣與出口,缺少一分助力。因此,本研究將利用所開發的多主元高熵多相AlCoCrFeNi 高熵合金之粉末製造與熱噴塗技術開發經驗為主軸,專注於高熵合金粉末製造與熱噴塗技術開發、研究微觀結構、熱處理效應、機械與氧化特性行為等。進一步,透過研製適合熱噴塗用的AlxCoCrFeNiy (0≦x≦1.5, 0≦y≦2)高熵合金,並結合成熟的熱噴塗技術,開發可工業應用的產品,並希冀獲致優異表現之特用高性能高熵合金材料,最終期望能將研發成果順利導入至實務的應用領域。開發電漿噴塗技術製作出的高性能多相AlxCoCrFeNiy (0≦x≦1.5, 0≦y≦2)高熵合金塗層,預計將提供抗腐蝕性、抗氧化、耐磨耗、熱阻抗或各種延長材料壽命的應用,一個可工程化應用的選擇。


In this research project, we are developing the thermal spray processes for high-entropy alloys (HEAs) based on the research achievement and developing experience of our group. Thermal spray processes are common and fundamental techniques for many industries; however, few researches devote to establish and accumulate new data for such basic skills. In order to promote the application capability of new metal materials, we continue our developing roadmap through the following topic “The development of powder manufacturing and thermal spray process for the high-performance multiphase AlxCoCrFeNiy (0≦x≦1.5, 0≦y≦2) high entropy alloy”, and focus on developing a process to introduce high-entropy alloys (HEAs) to practical applications. The procedures include the optimization of AlxCoCrFeNiy powders manufacture and the development of plasma-sprayed AlxCoCrFeNiy coatings. According to the results of gas atomization, thermal spray, microstructure, and chemical compositions, the trial products will be promoted to Steel and Aerospace industries. A foreign research will be invited to participate in this project and in the charge of simulation, theoretical derivation and explanation, which will make the results and discussions more complete. Through this work, a significant advance and intense collaboration in the HEAs research field, breakthrough industrial applicable techniques, as well as high impact literature were achieved.

Chapter 1 Introduction……………………………………………………………...1 Chapter 2 Literature Review 2.1 The definition and development of high entropy alloys…...……………………………...5 2.2 The characterizations and mechanical properties of high entropy alloys……………........6 2.2.1 Characterizations of high entropy alloys…………………………………….……...6 2.2.2 The mechanical properties of high entropy alloys…………….…………….………9 2.3 Applications of high entropy alloys……………………………………………….…….10 2.4 Introduction of AlxCoCrFeNi high entropy alloys………………………………………11 2.5 The definition of entropy and Gibbs rule………………………...………………………15 2.6 Gas atomization process……………………………………………………………….16 2.7 Thermal spray process………………………………………………………………….18 2.7.1 Microstructure of thermal-spray coatings……………………………………….19 2.8 Classification of thermal spray technology……………………………………………….20 2.9 The influence of plasma spraying parameters…………………………………………….25 2.9.1 The spraying parameters…………………………………………………………..25 2.9.2 Description of spraying parameters………………………………………………..26 2.9.3 The feature of plasma-sprayed coatings…………………………………………..31 Reference………………………………………………………………………………..32 Chapter 3 Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders 3.1 Backgrounds and Motivation……………………………………………………………38 3.2 Experimental Procedures………………………………………………………………..40 3.3 Results and Discussion………………………………………………………………….41 3.4 Summary……………………………………………………………………………...52 Reference………………………………………………………………………………..53 Chapter 4 Study on the continuous phase evolution and physical properties of gas-atomized high-entropy alloy powders 4.1 Backgrounds and Motivation……………………………………………………………55 4.2 Experimental Procedures………………………………………………………………..57 4.3 Results and Discussion………………………………………………………………….58 4.4 Summary……………………………………………………………………………...64 References…………………………………………………………………………….65 Chapter 5 Properties of Atomized AlCoCrFeNi High-Entropy Alloy Powders and their Phase-Adjustable Coatings Prepared via Plasma Spray Process 5.1 Backgrounds and Motivation……………………………………………………………67 5.2 Experimental Procedures………………………………………………………………..70 5.2.1 Preparation of AlCoCrFeNi powders……………………………………………...70 5.2.2 Preparation of plasma-sprayed AlCoCrFeNi coatings………………………….....70 5.2.3 Characterizations………………………………………………………………….72 5.3 Results and Discussion………………………………………………………………….72 5.3.1 Characterization of as-prepared and annealed AlCoCrFeNi powders…………….72 5.3.2 Characterizations of plasma-sprayed AlCoCrFeNi coatings……………………...80 5.4 Summary……………………………………………………………………………...84 Reference……………………………………………………………………………..85 Chapter 6 Conclusions and Suggestions for Future Work……...........89

[1] K.H. Huang, J.W. Yeh, A study on multicomponent alloy systems containing equal-mole elements [M.S. thesis]. Hsinchu: National Tsing Hua University (1996).
[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater., 6 (2004), pp. 299–303
[3] C.F. Wu, D.E.S. Arifin, C.A. Wang, J. Ruan, Coalescence and split of high-entropy polymer lamellar cocrystals, Polymer 138 (2018) 188–202.
[4] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.
[5] Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high-entropy alloys, JOM 64 (2012) 830–838.
[6] J.W. Yeh, S.J. Lin, T.S. Chin, J.Y. Gan, S.K. Chen, T.T. Shun, Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements, Metall. Mater. Trans. A 35 (2004) 2533–2536.
[7] Y. Zhang, T.T. Zuo, P.K. Liaw, Y.Q. Cheng, H High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep. 3 (2013) 1455.
[8] S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy, Acta Mater. 59 (2011) 182–190.
[9] F. Zhang, Y. Wu, H. Lou, Z. Zeng, V.B. Prakapenka, E. Greenberg, Y. Ren, J. Yan, J.S. Okasinski, X. Liu, Y. Liu, Q. Zeng, Z. Lu, Polymorphism in a high-entropy alloy, Nat. Commun. 8 (2017) 15687.
[10] Y. Yao, Z. Huang, P. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M.R. Zachariah, C. Wang, R.S. Yassar, J. Li, L. Hu, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science 359 (2018) 1489–1494.
[11] B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218.
[12] B.S. Murty, J.W. Yeh, S. Ranganathan, High-Entropy Alloys, London, UK, 2014.
[13] S. Uporov, V. Bykov, S. Pryanichnikov, A. Shubin, N. Uporova, Effect of synthesis route on structure and properties of AlCoCrFeNi high-entropy alloy, Intermetallics 83 (2017) 1–8.
[14] P. Ding, A. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, X. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method, J. Alloys Compd. 721 (2017) 609–614.
[15] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics 26 (2012) 44–51
[16] Z. Tang, O.N. Senkov, C.M. Parish, C. Zhang, F. Zhang, L.J. Santodonato, G. Wang, G. Zhao, F. Yang, P.K. Liaw, Tensile ductility of an AlCoCrFeNi multi-phase high-entropy alloy through hot isostatic pressing (HIP) and homogenization, Mater. Sci. Eng. A 647 (2015) 229–240.
[17] M. Vaidya, A. Prasad, A. Parakh, B.S. Murty, Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying, Mater. Design 126 (2017) 37–46.
[18] X. Gao, Y. Lu, B. Zhang, N. Liang, G. Wu, G. Sha, J. Liu, Y. Zhao, Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy, Acta Mater. 141 (2017) 59–66.
[19] W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, K. Shimoda, On the study of thermal-sprayed Ni0.2Co0.6Fe0.2CrSi0.2AlTi0.2 HEA overlay coating, Surf. Coat. Tech. 316 (2017) 71–74.
[20] K.K. Alaneme, M.O. Bodunrin, S.R. Oke, Processing, alloy composition and phase transition effect on the mechanical and corrosion properties of high entropy alloys: a review, J. Mater. Res. Technol. 5 (2016) 384–393.
[21] W. Kai, C.C. Li, F.P. Cheng, K.P. Chu, R.T. Huang, L.W. Tsay, J.J. Kai, The oxidation behavior of an equimolar FeCoNiCrMn high-entropyalloy at 950 ◦C in various oxygen-containing atmospheres, Corros. Sci. 108 (2016) 209–214.
[22] J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater. 62 (2014) 105–113.
[23] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater. 59 (2011) 6308–6317.
[24] Y. Wang, Y. Yang, H. Yang, M. Zhang, S. Ma, J. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy, Mater. Chem. Phys. 210 (2018) 233–239.
[25] P. Fauchais, G. Montavon, G. Bertrand, From Powders to Thermally Sprayed Coatings, J. Therm. Spray Techn. 19 (2010) 56–80.
[26] P. Boch, P. Fauchais, D. Lombard, B. Rogeaux, M. Vardelle, Plasma Sprayed Zirconia Coatings, Ad. Ceram. 12 (1985) 488–503.
[27] L.M. Wang, C.C. Chen, J.W. Yeh, S.T. Ke, The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySizAlTi0.2 high-entropy alloys, Mater. Chem. Phys. 126 (2011) 880–885.
[28] W.L. Hsu, Y.C. Yang, C.Y. Chen, J.W. Yeh, Thermal sprayed high-entropy NiCo0.6Fe0.2Cr1.5SiAlTi0.2 coating with improved mechanical properties and oxidation resistance, Intermetallics 89 (2017) 105–110.
[29] A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, Praveen S, R.S. Kottada, B.S. Murty, Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A 46 (2015) 791–800.
[30] W.L. Hsu, H. Murakami, J.W. Yeh, A.C. Yeh, K. Shimoda, A Heat-Resistant NiCo0.6Fe0.2Cr1.5SiAlTi0.2 Overlay Coating for High-Temperature Applications, J. Electrochem. Soc. 163 (2016) C752-C758.
[31] A. D. Salman, M. Ghadiri, and M.J. Hounslow, Handbook of Powder Technology, Particle Breakage, Lausanne, Switzerland, 2007.
[32] J.J. Dunkley, Atomization, Powder Metal Technologies and Applications, ASM Handbook, ASM International, Materials Park, OH, USA, 1998.
[33] T.M. Butler, M.L. Weaver, Oxidation behavior of arc melted AlCoCrFeNi multicomponent high-entropy alloys, J. Alloys Compd. 674 (2016) 229–244.
[34] Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy, Mater. Sci. Eng. A 491 (2008) 154–158.
[35] W.R. Wang, W.L. Wang, J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, J. Alloys Compd. 589 (2014) 143–152.
[36] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi‐Principal‐Element Alloys with Improved Oxidation and Wear Resistance for Thermal Spray Coating, Adv. Eng. Mater. 6 (2004) 74–78.
[37] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Mater. Res. Lett. 2 (2014) 107–123.
[38] D. Hackett, H. Kopech, Atomization advances in thermal spray powder, Adv. Mater. Processes 159 (2001) 31–34.
[39] V. Bolleddu, V. Racherla, P.P. Bandyopadhyay, Microstructural and tribological characterization of air plasma sprayed nanostructured alumina–titania coatings deposited with nitrogen and argon as primary plasma gases, Mater. Design 59 (2014) 252–263.
[40] ASTM Standard E1582, 2000, Standard Practice for Calibration of Temperature Scale for Thermogravimetry, ASTM International, West Conshohocken, PA, 2003.
[41] E.M. Plotnikova, I.I. Trushkin, D.A. Lenkevich, A.L. Kotelnikov, A. Cockburn, K.A. Zvezdin, Influence of the structure defects on the magnetic properties of the FePt/Fe bilayer, J. Appl. Phys. 115 (2014) 134318.

QR CODE