簡易檢索 / 詳目顯示

研究生: 林鼎翔
Ting-Hsiang Lin
論文名稱: 熱處理參數對光固化 3D 列印製備 AlCrFeNiSi 高熵合金機械性質之影響
Influence of sintering parameters on the mechanical properties of AlCrFeNiSi high-entropy alloys fabricated by photocuring 3D printing process
指導教授: 丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
陳士勛
Shih-Hsun Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 高熵合金AlCrFeNiSi數位光處理積層製造壓縮性能
外文關鍵詞: Compression property
相關次數: 點閱:183下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   此篇研究以氣體霧化法製備成分均勻,並篩選出粒徑為 10-60 µm 的 AlCrFeNiSi 高熵合金粉末,並與光固化樹脂混合成 60 vol.% 可光固化之複合漿料,導入數位光處理 3D 列印技術製成 AlCrFeNiSi 高熵合金複合材料,並進一步探討此零件於後續不同熱處理條件中,界面元素擴散對其機械性質之影響。
     透過數位光處理列印成功製備 AlCrFeNiSi 高熵合金複合材料,在後續以不同溫度燒結後可以觀察到,大氣與真空環境脫脂樣品,隨溫度升高,粉末距離縮小,且分別於 1100°C 與 1050°C 時,側面層狀結構消失,堆疊變得緻密,真空環境脫脂樣品,碳促進元素間擴散行為,使得在 1100°C 燒結溫度中,小粉末熔融附著於大粉末表面形成條狀物。
      在機械性質方面,隨著燒結溫度從 800°C 增加至 1100°C,真空環境脫脂樣品抗壓強度由 2.4 MPa 上升至 5 MPa,大氣環境脫脂樣品抗壓強度由 0.5 MPa 上升至 5.1 MPa,整體而言,真空環境脫脂樣品有著較大氣環境脫脂樣品更高的強度,在後續燒結處理過程中,碳作為有效的間隙合金元素之一,由於碳空位相互作用,加速元素的擴散躍遷,誘導 AlCrFeNiSi 高熵合金元素在較低溫燒結溫度便完成擴散,同時促使粉末間介面消失提高了鍵結力與結合度。


      In this study, AlCrFeNiSi high-entropy alloy powder with a uniform particle size of 10-60 μm was prepared by gas atomization method, and mixed with photocurable resin to form a 60 vol.% photocurable composite slurry, which was introduced into digital light processing 3D The AlCrFeNiSi high-entropy alloy composite material was made by printing technology, and the effect of interfacial element diffusion on the mechanical properties of this part in different subsequent heat treatment conditions was further explored.
      The AlCrFeNiSi high-entropy alloy composite material was successfully prepared by digital light processing and printing. After sintering at different temperatures, it can be observed that the debinding samples in the atmosphere and vacuum environment, as the temperature increases, the distance between the powders shrinks, and respectively at 1100 ° C and At 1050 °C, the side layer structure disappeared and the stacking became dense. The sample was debinded in a vacuum environment, and carbon promoted the diffusion behavior between elements, so that at the sintering temperature of 1100 °C, the small powder fused and attached to the surface of the large powder to form strips.
      In terms of mechanical properties, as the sintering temperature increased from 800°C to 1100°C, the compressive strength of the debinded sample in a vacuum environment increased from 2.4 MPa to 5 MPa, and the compressive strength of the debinded sample in an atmospheric environment increased from 0.5 MPa to 5.1 MPa. , the debinding sample in a vacuum environment has higher strength than the debinding sample in the atmospheric environment. In the subsequent sintering process, carbon is one of the effective interstitial alloying elements. Due to the interaction of carbon vacancies, the diffusion transition of elements is accelerated, and the AlCrFeNiSi high-entropy alloy is induced elements diffuse at a lower sintering temperature, and at the same time promote the disappearance of the interface between powders and improve the bonding force and degree of bonding.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 前言 1 第二章 文獻回顧 3 2.1 高熵合金之發展背景 3 2.2 高熵合金之定義 4 2.3 高熵合金之四大核心效應 6 2.4 高熵合金之熱力學演算 11 2.4.1 固溶體之形成 11 2.4.2 晶體結構之形成 14 2.5 高熵合金之系統 15 2.6 高熵合金之製程技術 18 2.7 積層製造之簡介 20 2.7.1 熔融沈積成型 22 2.7.2 選擇性雷射燒結 23 2.7.3 數位光處理 24 2.8 影響成品之主要參數 29 2.8.1 前製程-漿料製備 29 2.8.2 中製程-3D 列印 31 2.8.3 後製程-熱脫脂與固相燒結 33 2.9 前導文獻回顧與研究動機總結 36 第三章 實驗方法 38 3.1 實驗流程簡介 38 3.2 實驗材料 39 3.2.1 AlCrFeNiSi 高熵合金粉末 39 3.2.2 光固化樹脂漿料 41 3.3 樣品製備 44 3.3.1 漿料混合 44 3.3.2 數位光處理列印 46 3.3.3 樣品熱處理 50 3.3.4 微觀結構及機械性質分析樣品製備 53 3.4 實驗分析及儀器原理 54 3.4.1 光學顯微鏡 54 3.4.2 場發射掃描式電子顯微鏡 55 3.4.3 能量分散光譜儀 56 3.4.4 熱重分析儀 57 3.4.5 MTS 42.503 靜態拉力試驗機 58 第四章 結果與討論 59 4.1 脫脂氣氛對高熵合金之微觀結構及元素分佈分析 59 4.2 燒結溫度對高熵合金之微觀結構 60 4.3 熱處理對高熵合金機械性質之影響 62 4.4 燒結溫度對高熵合金之元素分佈分析 65 第五章 結論與未來展望 69 5.1 結論 69 5.2 未來展望 71 參考文獻 72

    [1] Cantor, B., I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375-377: p. 213-218.
    [2] Yeh, J.W., S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    [3] Han, C.J., Q.H. Fang, Y.S. Shi, S.B. Tor, C.K. Chua, and K. Zhou, Recent Advances on High-Entropy Alloys for 3D Printing. Advanced Materials, 2020. 32(26).
    [4] Zeng, Z., M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, Z. Chen, W. Ma, and K. Morita, Mechanical properties of Cantor alloys driven by additional elements: a review. Journal of Materials Research and Technology, 2021. 15: p. 1920-1934.
    [5] Zeng, Z., M. Xiang, D. Zhang, J. Shi, W. Wang, X. Tang, W. Tang, Y. Wang, X. Ma, and Z. Chen, Mechanical properties of Cantor alloys driven by additional elements: a review. Journal of Materials Research and Technology, 2021. 15: p. 1920-1934.
    [6] Wong, S.-K., T.-T. Shun, C.-H. Chang, and C.-F. Lee, Microstructures and properties of Al0. 3CoCrFeNiMnx high-entropy alloys. Materials Chemistry and Physics, 2018. 210: p. 146-151.
    [7] Holcomb, G.R., J. Tylczak, and C. Carney, Oxidation of CoCrFeMnNi high entropy alloys. Jom, 2015. 67: p. 2326-2339.
    [8] Torbati-Sarraf, H., M. Shabani, P.D. Jablonski, G.J. Pataky, and A. Poursaee, The influence of incorporation of Mn on the pitting corrosion performance of CrFeCoNi High Entropy Alloy at different temperatures. Materials & Design, 2019. 184: p. 108170.
    [9] Wu, J.-M., S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 2006. 261(5-6): p. 513-519.
    [10] Deqing, W., Phase evolution of an aluminized steel by oxidation treatment. Applied Surface Science, 2008. 254(10): p. 3026-3032.
    [11] Zhang, M., L. Zhang, J. Fan, P. Yu, and G. Li, Novel Co-free CrFeNiNb0. 1Tix high-entropy alloys with ultra high hardness and strength. Materials Science and Engineering: A, 2019. 764: p. 138212.
    [12] Kumar, A., P. Dhekne, A.K. Swarnakar, and M.K. Chopkar, Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Materials Letters, 2017. 188: p. 73-76.
    [13] Diao, H., X. Xie, F. Sun, K.A. Dahmen, and P.K. Liaw, Mechanical properties of high-entropy alloys. High-entropy alloys: fundamentals and applications, 2016: p. 181-236.
    [14] Liu, Y., J. Wang, Q. Fang, B. Liu, Y. Wu, and S. Chen, Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics, 2016. 68: p. 16-22.
    [15] Zhang, Y. and Q. Xing, High entropy alloys: Manufacturing routes. Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2020.
    [16] Löbel, M., T. Lindner, C. Kohrt, and T. Lampke. Processing of AlCoCrFeNiTi high entropy alloy by atmospheric plasma spraying. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.
    [17] Yang, C.-C., J.L.H. Chau, C.-J. Weng, C.-S. Chen, and Y.-H. Chou, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process. Materials Chemistry and Physics, 2017. 202: p. 151-158.
    [18] Moghaddam, A.O., N.A. Shaburova, M.N. Samodurova, A. Abdollahzadeh, and E.A. Trofimov, Additive manufacturing of high entropy alloys: A practical review. Journal of Materials Science & Technology, 2021. 77: p. 131-162.
    [19] Cheng, K.-C., J.-H. Chen, S. Stadler, and S.-H. Chen, Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Applied Surface Science, 2019. 478: p. 478-486.
    [20] Chang, S., X. Huang, C.Y.A. Ong, L. Zhao, L. Li, X. Wang, and J. Ding, High loading accessible active sites via designable 3D-printed metal architecture towards promoting electrocatalytic performance. Journal of Materials Chemistry A, 2019. 7(31): p. 18338-18347.
    [21] Ramazani, H. and A. Kami, Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: a review. Progress in Additive Manufacturing, 2022. 7(4): p. 609-626.
    [22] Kumar, L.J. and C. Krishnadas Nair, Current trends of additive manufacturing in the aerospace industry. Advances in 3D printing & additive manufacturing technologies, 2017: p. 39-54.
    [23] Steyrer, B., B. Busetti, G. Harakály, R. Liska, and J. Stampfl, Hot Lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Additive Manufacturing, 2018. 21: p. 209-214.
    [24] He, R., W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, and Z. Xie, Fabrication of complex-shaped zirconia ceramic parts via a DLP-stereolithography-based 3D printing method. Ceramics International, 2018. 44(3): p. 3412-3416.
    [25] Murty, B.S., J.-W. Yeh, S. Ranganathan, and P. Bhattacharjee, High-entropy alloys. 2019: Elsevier.
    [26] Yeh, J.-W., Overview of high-entropy alloys. High-entropy alloys: fundamentals and applications, 2016: p. 1-19.
    [27] Wang, X., W. Guo, and Y. Fu, High-entropy alloys: emerging materials for advanced functional applications. Journal of Materials Chemistry A, 2021. 9(2): p. 663-701.
    [28] Zheng, Y., X. Huang, J. Chen, K. Wu, J. Wang, and X. Zhang, A review of conductive carbon materials for 3D printing: Materials, technologies, properties, and applications. Materials, 2021. 14(14): p. 3911.
    [29] Zhang, Y., T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014. 61: p. 1-93.
    [30] Tsai, M.H. and J.W. Yeh, High-Entropy Alloys: A Critical Review. Materials Research Letters, 2014. 2(3): p. 107-123.
    [31] Yeh, J.-W., S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials chemistry and physics, 2007. 103(1): p. 41-46.
    [32] Lukianova, O.A., Z. Rao, V. Kulitckii, Z. Li, G. Wilde, and S.V. Divinski, Impact of interstitial carbon on self-diffusion in CoCrFeMnNi high entropy alloys. Scripta Materialia, 2020. 188: p. 264-268.
    [33] Wang, W.-R., W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 2012. 26: p. 44-51.
    [34] Cao, B.X., C. Wang, T. Yang, and C.T. Liu, Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia, 2020. 187: p. 250-255.
    [35] Zhang, Y., Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2008. 10(6): p. 534-538.
    [36] Erdogan, A., S.E. Sunbul, K. Icin, and K.M. Doleker, Microstructure, wear and oxidation behavior of AlCrFeNiX (X = Cu, Si, Co) high entropy alloys produced by powder metallurgy. Vacuum, 2021. 187.
    [37] Yang, X. and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 2012. 132(2-3): p. 233-238.
    [38] Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
    [39] Otto, F., A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 2013. 61(15): p. 5743-5755.
    [40] Guo, S., C. Ng, J. Lu, and C. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of applied physics, 2011. 109(10): p. 103505.
    [41] Li, C., J. Du, Y. Gao, F. Bu, Y.H. Tan, Y. Wang, G. Fu, C. Guan, X. Xu, and W. Huang, Stereolithography of 3D Sustainable Metal Electrodes towards High‐Performance Nickel Iron Battery. Advanced Functional Materials, 2022. 32(40).
    [42] He, J., W. Liu, H. Wang, Y. Wu, X. Liu, T. Nieh, and Z. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 2014. 62: p. 105-113.
    [43] Cheng, J., X. Liang, and B. Xu, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings. Surface and Coatings Technology, 2014. 240: p. 184-190.
    [44] Qin, G., R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, and H. Fu, Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. Journal of materials science & technology, 2019. 35(4): p. 578-583.
    [45] Wang, Y.P., B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Microstructure and compressive properties of AlCrFeCoNi high entropy alloy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 491(1-2): p. 154-158.
    [46] Eissmann, N., B. Kloden, T. Weissgarber, and B. Kieback, High-entropy alloy CoCrFeMnNi produced by powder metallurgy. Powder Metallurgy, 2017. 60(3): p. 184-197.
    [47] Yan, X.H., J.S. Li, W.R. Zhang, and Y. Zhang, A brief review of high-entropy films. Materials Chemistry and Physics, 2018. 210: p. 12-19.
    [48] Chen, S.Y., Y. Tong, and P.K. Liaw, Additive Manufacturing of High-Entropy Alloys: A Review. Entropy, 2018. 20(12).
    [49] Sekhar, R.A., S. Samal, N. Nayan, and S.R. Bakshi, Microstructure and mechanical properties of Ti-Al-Ni-Co-Fe based high entropy alloys prepared by powder metallurgy route. Journal of Alloys and Compounds, 2019. 787: p. 123-132.
    [50] Kassym, K. and A. Perveen, Atomization processes of metal powders for 3D printing. Materials today: proceedings, 2020. 26: p. 1727-1733.
    [51] 李家彤(2022)。探討氣體霧化法製備之AlCrFeNiSi高熵合金粉末性質。﹝碩士論文。國立臺灣科技大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/66872p。.
    [52] Todai, M., T. Nagase, T. Hori, A. Matsugaki, A. Sekita, and T. Nakano, Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Materialia, 2017. 129: p. 65-68.
    [53] Liu, F., P. Liaw, and Y. Zhang, Recent Progress with BCC-Structured High-Entropy Alloys. Metals, 2022. 12(3).
    [54] Dhanunjayarao, B.N., N.V.S. Naidu, R.S. Kumar, Y. Phaneendra, B. Sateesh, J.L. Olajide, and E.R. Sadiku, 3D Printing of Fiber Reinforced Polymer Nanocomposites: Additive Manufacturing, in Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. 2020. p. 1-29.
    [55] Kaur, M. and A.K. Srivastava, Photopolymerization: A review. Journal of Macromolecular Science-Polymer Reviews, 2002. C42(4): p. 481-512.
    [56] Obst, P., J. Riedelbauch, P. Oehlmann, D. Rietzel, M. Launhardt, S. Schmölzer, T.A. Osswald, and G. Witt, Investigation of the influence of exposure time on the dual-curing reaction of RPU 70 during the DLS process and the resulting mechanical part properties. Additive Manufacturing, 2020. 32: p. 101002.
    [57] Pou, J., A. Riveiro, and J.P. Davim, Additive manufacturing. 2021: Elsevier.
    [58] Popescu, D., A. Zapciu, C. Amza, F. Baciu, and R. Marinescu, FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polymer Testing, 2018. 69: p. 157-166.
    [59] Kafle, A., E. Luis, R. Silwal, H.M. Pan, P.L. Shrestha, and A.K. Bastola, 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel), 2021. 13(18).
    [60] Kruth, J.P., P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting. Rapid prototyping journal, 2005. 11(1): p. 26-36.
    [61] Pagac, M., J. Hajnys, Q.-P. Ma, L. Jancar, J. Jansa, P. Stefek, and J. Mesicek, A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3d printing. Polymers, 2021. 13(4): p. 598.
    [62] Chaudhary, R., P. Fabbri, E. Leoni, F. Mazzanti, R. Akbari, and C. Antonini, Additive manufacturing by digital light processing: a review. Progress in Additive Manufacturing, 2022.
    [63] Ortiz, R.A., A.E.G. Valdez, E.E.G. Padilla, R.A. Flores, and J.F.E. Munoz, Development of a photocurable glass-fiber reinforced epoxy-amine/thiol-ene composite. Journal of Polymer Research, 2016. 23(2).
    [64] Yang, Y., Y.J. Zhou, X. Lin, Q.L. Yang, and G.S. Yang, Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics, 2020. 12(3).
    [65] Li, S., W.Y. Duan, T. Zhao, W.J. Han, L. Wang, R. Dou, and G. Wang, The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. Journal of the European Ceramic Society, 2018. 38(14): p. 4597-4603.
    [66] Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, Photo-curing 3D printing technique and its challenges. Bioactive materials, 2020. 5(1): p. 110-115.
    [67] Halloran, J.W., V. Tomeckova, S. Gentry, S. Das, P. Cilino, D. Yuan, R. Guo, A. Rudraraju, P. Shao, and T. Wu, Photopolymerization of powder suspensions for shaping ceramics. Journal of the European Ceramic Society, 2011. 31(14): p. 2613-2619.
    [68] Sim, J.-H., B.-K. Koo, M. Jung, and D.-S. Kim, Study on Debinding and Sintering Processes for Ceramics Fabricated Using Digital Light Processing (DLP) 3D Printing. Processes, 2022. 10(11): p. 2467.
    [69] Roumanie, M., C. Flassayer, A. Resch, L. Cortella, and R. Laucournet, Influence of debinding and sintering conditions on the composition and thermal conductivity of copper parts printed from highly loaded photocurable formulations. Sn Applied Sciences, 2021. 3(1).
    [70] Zhang, Y., S. Li, Y. Zhao, W. Duan, B. Liu, T. Wang, and G. Wang, Digital light processing 3D printing of AlSi10Mg powder modified by surface coating. Additive Manufacturing, 2021. 39: p. 101897.
    [71] Enneti, R.K., S.J. Park, R.M. German, and S.V. Atre, Thermal debinding process in particulate materials processing. Materials and Manufacturing Processes, 2012. 27(2): p. 103-118.
    [72] Kearns, E.R., R. Gillespie, and D.M. D'Alessandro, 3D printing of metal–organic framework composite materials for clean energy and environmental applications. Journal of Materials Chemistry A, 2021. 9(48): p. 27252-27270.
    [73] Mu, Y., J. Chen, X. An, J. Liang, J. Li, Y. Zhou, and X. Sun, Effect of synergism of solid loading and sintering temperature on microstructural evolution and mechanical properties of 60 vol% high solid loading ceramic core obtained through stereolithography 3D printing. Journal of the European Ceramic Society, 2023. 43(2): p. 661-675.
    [74] Cai, P., L. Guo, H. Wang, J. Li, J. Li, Y. Qiu, Q. Zhang, and Q. Lue, Effects of slurry mixing methods and solid loading on 3D printed silica glass parts based on DLP stereolithography. Ceramics International, 2020. 46(10): p. 16833-16841.
    [75] Zhang, K., Q. Meng, X. Zhang, Z. Qu, S. Jing, and R. He, Roles of solid loading in stereolithography additive manufacturing of ZrO2 ceramic. International Journal of Refractory Metals and Hard Materials, 2021. 99: p. 105604.
    [76] Chen, Z., J. Li, C. Liu, Y. Liu, J. Zhu, and C. Lao, Preparation of high solid loading and low viscosity ceramic slurries for photopolymerization-based 3D printing. Ceramics International, 2019. 45(9): p. 11549-11557.
    [77] De Lisi, M., C. Shu, U.M. Attia, and K. Essa, DLP of Translucent Alumina: In-Depth Investigation on Slurry Development and Debinding Regimes. Machines, 2023. 11(3): p. 321.
    [78] Conti, L., D. Bienenstein, M. Borlaf, and T. Graule, Effects of the layer height and exposure energy on the lateral resolution of zirconia parts printed by lithography-based additive manufacturing. Materials, 2020. 13(6): p. 1317.
    [79] de Camargo, I.L., R. Erbereli, J.F.P. Lovo, and C.A. Fortulan. DLP Additive Manufacturing of Ceramics: Photosensitive Parameters, Thermal Analysis, Post-Processing, and Parts Characterization. in Proceedings of the 11th Brazilian Congress on Manufacturing Engineering–COBEF 2021. 2021.
    [80] Bonada, J., A. Muguruza, X. Fernández-Francos, and X. Ramis, Influence of exposure time on mechanical properties and photocuring conversion ratios for photosensitive materials used in additive manufacturing. Procedia Manufacturing, 2017. 13: p. 762-769.
    [81] Hashmi, M.S.J., Comprehensive materials processing. 2014: Newnes.
    [82] Natarajan, J., Advances in Additive Manufacturing Processes. 2021: Bentham Science Publishers.
    [83] Kessler, A., R. Hickel, and M. Reymus, 3D printing in dentistry—State of the art. Operative dentistry, 2020. 45(1): p. 30-40.
    [84] Jiang, J., X. Xu, and J. Stringer, Support structures for additive manufacturing: a review. Journal of Manufacturing and Materials Processing, 2018. 2(4): p. 64.
    [85] German, R.M., Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Critical reviews in solid state and materials sciences, 2010. 35(4): p. 263-305.
    [86] Enneti, R.K., S.J. Park, R.M. German, and S.V. Atre, Review: Thermal Debinding Process in Particulate Materials Processing. Materials and Manufacturing Processes, 2012. 27(2): p. 103-118.
    [87] Li, H., Y.S. Liu, Y.S. Liu, K.H. Hu, Z.G. Lu, and J.J. Liang, Investigating the relation between debinding atmosphere and mechanical properties of stereolithography-based three-dimensional printed Al2O3 ceramic. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2020. 234(14): p. 1686-1694.
    [88] Li, H., Y.S. Liu, Y.S. Liu, Q.F. Zeng, K.H. Hu, Z.G. Lu, and J.J. Liang, Effect of debinding temperature under an argon atmosphere on the microstructure and properties of 3D-printed alumina ceramics. Materials Characterization, 2020. 168.

    QR CODE