簡易檢索 / 詳目顯示

研究生: 蘇梓豪
Tzu-Hao Su
論文名稱: 大面積UV LCD區域控光光固化積層製造系統設計開發與製作研究
Research on Design , Development and Manufacturing of Large-area UV LCD Local-dimming Vat Photopolymerization Additive Manufacturing System
指導教授: 鄭正元
Jeng-Ywam Jeng
林鼎晸
Ding-Zheng Lin
口試委員: 鄭正元
Jeng-Ywam Jeng
林鼎晸
Ding-Zheng Lin
謝志華
Chih-Hua Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 大面積 3D 列印光固化高速列印UVLED背光模組區域控光黑位固化拉拔力
外文關鍵詞: Large-area 3D printing, Vat Photopolymerization, high-speed printing, UVLED, backlight module, Local-dimming, black level curing phenomenon, separation force
相關次數: 點閱:324下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在積層製造(Additive Manufacturing, AM)技術的不斷發展下,已然成為
    一種新的生產技術,其獨特的加法製造能夠做到傳統加工技術所無法製造之
    設計與外型;但此技術仍限制於加工速度及生產數量兩大缺點,以至於無法
    大量取代傳統加工。
    而在積層製造中的光固化技術,LCD 技術有著最快速的發展,精細度隨
    著面板技術的進步有著顯著的提升;但 LCD 有著對比度低此先天性的缺點,
    當液晶關閉後仍會有光穿透,導致未預期固化物的產生。
    本實驗室於 2021 年製作出全台灣第一台,465nm 波長段之 32 吋光固化
    3D 列印機,提升光固化列印產量,而本研究中進一步將列印面積擴大至 50
    吋,並將光源更換為更符合市場需求之 405nm 波長背光,同時結合 135 區
    區域控光技術(Local-dimming),以此提升螢幕對比度和解決黑位固化物的產
    生。研究中透過背光模組的搭配、多軸向精度分析、區域控光光強測試、黑
    位固化實際值與理論值的對比、拉拔力極大列列印等實驗,驗證機台的實際
    生產能力。
    本研究結果顯示出,此 50 吋機台搭配光學膜片形式的背光模組,能以
    較低成本的方式達到更好的光均勻度,且搭配區域控光技術後,能夠大幅減
    少未預期固化物的產生,並大幅降低機台功耗節省能源,相比於市面上之大
    面積列印機台,本機台能夠以更高的生產效率,大量製造出不同物件。


    Under the continuous development of Additive Manufacturing (AM)
    technology , it has emerged as a new production technique that enables the creation
    of designs and shapes that are beyond the capabilities of traditional processing
    methods. However , this technology still has two major limitations : processing
    speed and production quantity , which prevent it from fully replacing traditional
    manufacturing methods.
    In the realm of additive manufacturing, Vat Photopolymerization has
    witnessed rapid advancements, particularly in LCD technology. The precision has
    significantly improved alongside advancements in panel technology. However,
    LCDs inherently suffer from low contrast ratios, as they allow light to pass through
    even when the liquid crystal is turned off, resulting in the production of unintended
    cured materials.
    In our laboratory, we developed the first 32-inch vat photopolymerization 3D
    printer with 465nm wavelength in Taiwan in 2021, which enhanced the
    productivity of photopolymerization printing. In this study, we further expanded
    the printer size to 50 inches and replaced the light source with 405nm wavelength
    backlight that better aligns with market demands. Additionally, we integrated 135-
    zone local-dimming technology to improve screen contrast and address the issue
    of unintended curing of dark areas. Through experiments involving backlight
    module integration, multi-axis precision analysis, local-dimming light intensity
    III
    testing, comparison between actual and theoretical values of dark area curing, and
    high-force tensile printing, we validated the practical production capabilities of the
    printer.
    The research results demonstrate that this 50-inch printer, equipped with
    optical film-based backlight modules, achieves superior light uniformity at a lower
    cost. Moreover, when combined with local-dimming technology, it significantly
    reduces the occurrence of unintended cured materials and greatly reduces machine
    power consumption, thus conserving energy. Compared to large-area printers
    available on the market, this printer can achieve higher production efficiency and
    manufacture a wide range of objects in large quantities.

    摘要 .........................................................................................................................I Abstract.................................................................................................................. II 誌謝 ......................................................................................................................IV 目錄 ....................................................................................................................... V 圖目錄 ............................................................................................................... VIII 表目錄 ................................................................................................................ XII 第一章 緒論......................................................................................................1 1.1 前言......................................................................................................1 1.2 研究動機..............................................................................................3 1.3 論文架構..............................................................................................4 第二章 文獻回顧..............................................................................................5 2.1 積層製造..............................................................................................5 2.2 光聚合固化成型技術..........................................................................7 2.2.1 光聚合固化原理.......................................................................8 2.2.2 上照式(Top Down)及下照式(Bottom up)技術.....................10 2.2.3 光固化成型技術.....................................................................12 2.2.4 LCD 成型技術使用之背光模組 ...........................................17 2.3 LCD 液晶顯示器發展與技術...........................................................20 2.3.1 液晶顯示器的顯像原理.........................................................20 2.3.2 LCD 背光模組結構介紹........................................................21 2.3.3 Local-dimming 背光技術......................................................26 2.4 大面積 LCD 光固化 3D 列印...........................................................28 2.4.1 大面積背光模組.....................................................................29 2.4.2 光固化列印區域控光技術 ....................................................30 2.5 拉拔力................................................................................................31 2.5.1 物理方式分離方案.................................................................32 2.5.2 化學方式分離方案.................................................................33 第三章 實驗設備與儀器介紹........................................................................34 3.1 成型模組............................................................................................34 3.1.1 Z 軸傳動機構...............................................................................34 3.1.2 成型平台模組 .............................................................................37 3.1.3 樹脂槽 .........................................................................................39 3.2 光源模組架構....................................................................................40 3.1.1 燈珠使用 .....................................................................................40 3.1.2 燈板設計 .....................................................................................42 3.1.3 區域控光 .....................................................................................42 3.1.4 LCD 液晶螢幕 .............................................................................43 3.3 控制模組............................................................................................44 3.3.1 Arduino .........................................................................................44 3.3.2 固態繼電器 .................................................................................45 3.3.3 電源供應器 .................................................................................46 3.3.4 區域控光控制板與開關 .............................................................46 3.4 機台軟體............................................................................................47 3.5 樹脂使用............................................................................................48 3.6 量測儀器............................................................................................49 3.6.1 測微儀 .........................................................................................49 3.6.2 手持式顯微鏡 ..............................................................................49 3.6.3 光功率量測儀 .............................................................................50 第四章 研究內容與方法................................................................................51 4.1 UV 光直下式光學膜片選用.............................................................51 4.1.1 光學膜片排列與選用 ..................................................................51 4.1.2 最終光學模片性能測試 ..............................................................53 4.2 精度測試方法....................................................................................54 4.2.1 樹脂曝光秒數量測 ......................................................................54 4.2.2 精度測試列印 ..............................................................................55 4.3 區域控光實驗....................................................................................57 4.4 拉拔力測試........................................................................................59 4.5 成品列印............................................................................................60 第五章 結果分析與比較................................................................................61 5.1 背光模組選用結果分析....................................................................61 5.1.1 膜片對 405nm 波長穿透率比較 .................................................61 5.1.2 最終選用膜片光強及均勻度分析 ..............................................64 5.2 多種背光模組列印結果分析............................................................66 5.2.1 樹脂固化深度實驗數據分析 ......................................................66 5.2.2 多種背光列印精度分析 ..............................................................68 5.2.3 各角度列印精度測試 ..................................................................70 5.3 區域控光前後實驗數據分析與比較................................................72 5.3.1 黑位光強及對比度 ......................................................................72 5.3.2 黑位固化數值計算 ......................................................................74 5.3.3 區域控光處理後光強 ..................................................................75 5.3.4 實際列印結果分析 ......................................................................77 5.3.5 區域控光能耗對比 ......................................................................82 5.4 拉拔力測試結果與分析.....................................................................84 5.5 列印成品展示及應用.........................................................................86 第六章 結論與未來展望................................................................................89 6.1 結論.....................................................................................................89 6.2 未來展望............................................................................................90 參考文獻 ..............................................................................................................91

    [1] ISO/ASTM. ISO/ASTM 52900:2021(en)Additive manufacturing-General
    principles-Fundamentals and vocabulary. 2021; Available from: https://w
    ww.iso.org/obp/ui/#iso:std:iso-astm:52900:ed-2:v1:en.
    [2] Carbon3D. Carbon Lattice Innovation — The adidas Story. Available
    from: https://www.carbon3d.com/resources/whitepaper/the-adidas-story.
    [3] 鄭正元等, 3D 列印-積層製造技術與應用. 2017: 全華圖書.
    [4] Hendrixson, S. Infographic: The Seven Families of Additive Manufactu
    -ring Technologies. 2015; Available from: https://www.additivemanufact
    uring.media/articles/infographic-additive-family-tree.
    [5] Hull, C.W., Apparatus for production of three-dimensional objects by
    stereolithography. 1986: U.S. Patent 4575330.
    [6] Wohlers, T. and T. Gornet, History of additive manufacturing. Wohlers
    report 24, 2014.
    [7] Systems, D. Our Story. Available from: https://www.3dsystems.com/ourstory.
    [8] Pagac, M., et al., A review of vat photopolymerization technology: ma
    t-erials, applications, challenges, and future trends of 3D printing. Poly
    mers, 2021. 13(4): p. 598.
    [9] FabWeaver. Photopolymerization of Resins in SLA 2022; Available from: https://blog.fabweaver.com/3d-printing-principle-sla-resin-photopolymer
    ization-process-0.
    [10] Redwood, B., F. Schöffer, and B. Garret, The 3D Printing Handbook:
    Technologies. Design and Applications D. Vol. 3. 2017.
    92
    [11] Aniwaa. What is the best resin 3D printer on the market? 2023; Avail
    -able from: https://www.aniwaa.com/buyers-guide/3d-printers/the-best-resi
    n-3d-printer-sla-and-dlp/.
    [12] Formlabs. SLA vs. DLP: Guide to Resin 3D Printers. Available from:
    https://formlabs.com/blog/resin-3d-printer-comparison-sla-vs-dlp/.
    [13] 黃育嘉, 動態光罩式三維微影系統之研發, 2004. p. 82.
    [14] Spectrum, I. Chip Hall of Fame: Texas Instruments Digital Micromirro
    r Device. 2017; Available from: https://spectrum.ieee.org/chip-hall-of-fa
    me-texas-instruments-digital-micromirror-device.
    [15] Bertsch, A., et al., Microstereophotolithography using a liquid crystal d
    isplay as dynamic mask-generator. Microsystem technologies, 1997. 3
    (2): p. 42-47.
    [16] Chitubox. The Factors to Affect the Print Speed of A Resin(SLA/DLP/
    LCD) 3D Printer. Available from: https://www.chitubox.com/en/article/ac
    ademy/advanced/faq/25.
    [17] 巫昆達, 高速 UV LCD 光固化 3D 列印系統開發之研究, 2019. p.105.
    [18] 李金銘, 大面積高速 UV LCD 光固化 3D 列印成型技術以提升背光模
    組光效率之研究, 2020. p.132.
    [19] 吳俊賢, 大面積高速光固化 3D 列印超音波震盪脫膜成型技術之研究,
    2020. p.138.
    [20] 張浩威, 大面積高速光固化 3D 列印成型技術之分離力研究, 2019. p.73.
    [21] 陳凱翔, 使用可量產塗佈技術製作高速光固化 3D 列印系統樹脂槽底膜
    之研發, 2020. p.161.
    [22] 蔡秉勳, 超疏滑連續式 3D 列印成型技術之研究, 2021. p. 190.
    93
    [23] 游秉閎, 大面積 LCD 自然光光固化積層製造系統背光模組開發設計與
    製作研究, 2021. p. 109.
    [24] 陳昱丞, 大面積 LCD 自然光光固化積層製造系統機構開發設計與製作
    研究, 2021, p.92.
    [25] 蘇柏彰, 開發區域控光背光系統以降低 LCD 光固化積層製造之黑位固
    化現象影響, 2022, p.94.
    [26] 劉德風, 行動裝置式光固化 3D 列印系統之開發與研究,2017,p.75.
    [27] 賴俊宏, 手機 3D 列印系統低分離力樹脂槽之開發研究, 2018, p.86.
    [28] 呂佺宸, 下照式手機 3D 列印系統提升解析度之研究, 2018, p.86.
    [29] 吳嘉文, 3D 列印機開發策略-以 A 公司為例, 2019, p.162.
    [30] 賀彥儒, 桌上型 3D 列印機之行銷策略-手機 3D 列印機案例分析, 2020,
    p.145.
    [31] T3D. T3D Mobile 3D Printer. Available from: http://myt3d.com/.
    [32] ELEGOO. ELEGOO Mars. Available from: https://www.elegoo.com/.
    [33] Phrozen. Printers. Available from: https://phrozen3d.com.tw/.
    [34] 卓聖鵬, 彩色液晶 LCD 顯示器. 中華民國九十一年: 全華科技圖書股
    份有限公司.
    [35] Ashwini Kumar Sinha , V.M. What Is LCD? 2020; Available from: ht
    tps://www.electronicsforu.com/technology-trends/learn-electronics/lcd-liqui
    d-crystal-display-basics.
    [36] Chen, J., W. Cranton, and M. Fihn, Handbook of visual display techn
    ology. 2016: Springer.
    [37] Technology, E. Products. Available from: https://www.efun.com.tw/prod_
    intro/Diffuser.
    94
    [38] HelloTech. What is Full-Array Local Dimming, and Is It Worth It? 20
    21; Available from: https://www.hellotech.com/blog/what-is-full-array-loc
    al-dimming-tv.
    [39] Wu, X., et al., Tilting separation analysis of bottom-up mask projectio
    n stereolithography based on cohesive zone model. Journal of Material
    s Processing Technology, 2017. 243: p. 184-196.
    [40] Pan, Y., Y. Chen, and C. Zhou. Fast recoating methods for the project
    ion-based stereolithography process in micro-and macro-scales. in 2012
    International Solid Freeform Fabrication Symposium. 2012. University
    of Texas at Austin.
    [41]Jin, J., et al., A vibration-assisted method to reduce separation force f
    or stereolithography. Journal of Manufacturing Processes, 2018. 34: p.
    793-801.
    [42] 連帝皓, 透析式高速光固化 3D 列印成型技術之研究, 2018, p.104.
    [43] 陳貞佑, 下照式 DLP 高速 3D 列印失敗因子之探討, 2019, p.99.
    [44] 昱展科技. 產品資訊. Available from: https://www.yu-zhan.com/product_
    d.php?lang=tw&tb=1&id=1290.
    [45] 奧特維科技. UV 產品. Available from: https://www.uvtled-tw.com/appli
    cation-2/.
    [46] WEHO. Products. Available from: https://www.wehopower.com/.
    [47] Chen, E., P. Liu, and F. Yu, Optimization design of single freeform le
    ns based illumination system for CF-LCoS handheld pico-projectors. O
    ptik, 2013. 124(14): p. 1912-1916.

    無法下載圖示 全文公開日期 2033/08/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE