簡易檢索 / 詳目顯示

研究生: 張書豪
Shu-Hao - Chang
論文名稱: 紫外光固化低酸性光學感壓膠之製備與應用
Preparation and Application of UV Cured Low-Acidity Optical PressureSensitive Adhesives
指導教授: 郭中豐
Chung-Feng Kuo
口試委員: 黃昌群
Chang-Chiun Huang
董泯言
Min-yan Dong
楊勝俊
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 139
中文關鍵詞: 光學感壓膠紫外光固化丙烯酸酯田口方法反應曲面法粒子群聚演算法
外文關鍵詞: Optically Clear Adhesives, UV curing, Acrylate, Taguchi method, Response surface methodology, Particle swarm optimization
相關次數: 點閱:523下載:56
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將酸鹼中和的概念導入合成光學感壓膠(Optically clear adhesives, OCA)中,解決目前光學感壓膠中含有酸根基團易對氧化銦錫(Indium tin oxide, ITO)導電玻璃造成腐蝕的問題,使可於導電玻璃表面輕易撕除且不殘膠,完整保留導電玻璃,使導電玻璃可再重工使用,研究分為紫外光合成寡聚物、紫外光固化光學感壓膠以及最佳化製程參數設計三個部分進行。
    第一部分為寡聚物的組成。丙烯酸-2-乙基己酯(2-Ethylhexyl acrylate, 2-EHA)為提供光學感壓膠黏著力及初黏性能,丙烯酸(Acrylic acid, AA)與N,N-二甲基丙烯酰胺(N,N-Dimethylacrylamide, DMAA)提供光學感壓膠內聚力,並利用DMAA的氮原子孤電子對吸收來自於AA末端羧酸基解離H+達到酸鹼中和的目的。在寡聚物反應體系中利用光引發劑1-羥基環己基苯基甲酮(1-Hydroxycyclohexyl phenyl ketone, HCPK)控制寡聚物分子量。探討光引發劑濃度以及AA與DMAA莫耳比濃度對於寡聚物分子量的影響。寡聚物的官能基團、黏度以及分子量分別使用傅立業紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR)、迴轉式動態流變儀(Modular compact rheometer, MCR)測量寡聚物黏度以及膠體滲透層析儀(Gel permeation chromatography, GPC)進行分析。結果顯示,在AA與DMAA莫耳比濃度為20 wt%、光引發劑為4%時,分子量為80998g/mole、黏度為87.2(Pa•s)、玻璃轉移溫度為-63.17℃。
    第二部分將第一部分合成之寡聚物作為基礎樹脂與活性稀釋劑甲基丙烯酸縮水甘油酯(Glycidyl methacrylate, GMA)以及光引發劑混合後塗佈於離型膜表面經由紫外光固化成型。甲基丙烯酸縮水甘油酯為多官能基交聯單體可增加光學感壓膠內聚力提升重工性。結果顯示,當甲基丙烯酸縮水甘油酯55%時,剝離強度可達689g/25.4mm、透光度97.5%、霧度1.92%、折射率1.48。
    第三部分利用田口方法(Taguchi method)規劃搭配主效果分析(Main effect analysis, MEA)及變異數分析(Analysis of variance, ANOVA)找出剝離強度、透光度、霧度、折射率四種單品質最佳參數,剝離強度最佳參數為2-EHA含量80%、光引發劑量7%、寡聚物55%;透光度、霧度、折射率最佳參數為2-EHA含量80%、光引發劑量4%、寡聚物55%.
    接著利用各單品質特性訊號雜訊比(Signal to noise ratio, S/N)搭配反應曲面法(Response surface methodology, RSM)建立二階迴歸模型,接著利用粒子群聚演算法(Particle swarm optimization, PSO)來找出光學感壓膠多品質全域最佳參數為2-EHA含量80%、光引發劑量4.32%、寡聚物55%,研究顯示,單品質與多品質最佳參數製程,實驗結果均位於95%信賴區間內,霧度為最大誤差皆小於5.3%,實驗具有再現性。
    本研究亦進行全域實驗,結果顯示最佳參數為80%2-EHA含量、4%光引發劑、55%活性稀釋劑,可達到剝離強度689g/25.4mm、透光度97.5%、霧度1.92%、折射率1.48,且經加嚴測試後光學感壓膠無腐蝕金屬表面且具有重工性,證明本實驗具有良好品質特性。
    本研究亦進行全域實驗,結果顯示最佳參數為80%2-EHA含量、4%光引發劑、55%活性稀釋劑,可達到剝離強度可達689g/25.4mm、透光度97.5%、霧度1.92%、折射率1.48,且光學感壓膠經加嚴測試後光學感壓膠無腐蝕金屬表面且仍具有重工性。證明本實驗具有良好品質特性。


    The concept of neutralization between acid and base is imported into the synthesis of optically clear adhesives (OCA), to solve the problem that the acid radical group in the optical clear adhesives is likely to corrode the indium tin oxide (ITO) conductive glass, so that the adhesive can be torn off the conductive glass surface easily and there is no residue, the conductive glass remains complete, the con-ductive glass can be reworked. The study is divided into three parts, including ultraviolet (UV) synthesized oligomer, UV cured OCA and optimum process parameter design.
    Part 1 oligomer as the composition of oligomer, 2-EHA provides the optical adhesive with adhesive force and tack property, acid acry-late (AA) and N,N-Dimethylacrylamide (DMAA) provide the optical adhesive with cohesion, the nitrogen atom lone electron pair of DMAA absorbs the H+ dissociated from the carboxylic acid radical at the AA end to neutralize acid and base. In the oligomer reaction system, the initiator 1-hydroxycyclohexyl phenyl ketone (HCPK) controls the molecular weight of oligomer. The effect of photoinitiator concentration and AA and DMAA mole ratio concentration on the molecular weight of oligomer is discussed. The functional group, viscosity and molecular weight of oligomer are analyzed by using Fourier transform infrared spectroscopy (FTIR), Modular compact rheometerb (MCR) and Gel permeation chromatography (GPC). The results show when the AA and DMAA mole ratio concentration is 20 wt% and the photoinitiator is 4%, the molecular weight is 80998 g/mole, the viscosity is 87.2 (Pa•s), the glass transition temperature is -63.17 ℃.
    In Part 2, the oligomer synthesized in the first part is used as basic resin, mixed with glycidyl methacrylate (GMA) and photoinitiator, coated on the release film surface, molded by UV curing. The glycidyl methacrylate is multi-functional group crosslinking monomer, which enhances the cohesion of optical adhesive to upgrade the rework property. The results show when the glycidyl methacrylate is 55 %, the peel strength is 689 g/25.4mm, the transmittancy is 97.5 %, the haze is 1.92 %, and the refractive index is 1.48.
    Part 3 uses Taguchi method design, Main effect analysis (MEA) and Analysis of variance (ANOVA) to find out four single quality op-timum parameters, which are peel strength, transmittancy, haze and refractive index. The optimum parameters of peel strength are 2-EHA content 80 %, photoinitiator 7 %, and oligomer 55 %; the optimum parameters of transmittancy, haze and refractive index are 2-EHA content 80 %, photoinitiator 4 %, and oligomer 55 %.
    Afterwards, the Signal to noise ratio (S/N) ratio of single quality characteristics and Response surface methodology (RSM) are used to build the second-order regression model, and the Particle swarm op-timization (PSO) is used to find out the multi-quality global optimum parameter 2-EHA content 80 %, photoinitiator 4.32 %, oligomer 55 %. The findings show that the experimental results of single quality and multi-quality optimum parameter processes are in the 95 % confidence interval, the maximum error of haze is less than 5.3 %, experiment has reproducibility.
    The global experiment is conducted, the results show that the op-timum parameter of optically clear adhesives experimental group is 2-EHA content 80 %, photoinitiator 4%, oligomer 55 %, reaching the peel strength is 689 g/25.4mm, the transmittancy is 97.5 %, the haze is 1.92 %, and the refractive index is 1.48, and the strict test shows the optical clear adhesives has not corroded metal surface and has rework property, proving that this experiment has good quality characteris-tics.

    摘要 I 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XV 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 光學感壓膠之定義 2 1.2.2 光學感壓膠之合成 2 1.2.3 光學感壓膠文獻回顧 4 1.2.4 最佳參數理論 8 1.3 研究動機與目的 10 1.4 研究規劃 12 1.5 論文大綱與流程圖 13 第2章 材料特性與設備原理 16 2.1 光學感壓膠之黏著理論 16 2.2 光學感壓膠之黏著物性 18 2.3 丙烯酸單體特性及應用 19 2.4 UV燈源種類 21 2.5 UV聚合反應機制及原理 21 2.5.1 自由基聚合反應 22 2.5.2 陽離子聚合反應 23 第3章 實驗方法與實驗步驟 24 3.1 寡聚物合成方法 24 3.2 光學感壓膠製備方法 24 3.3 田口規劃法 24 3.4 訊號則訊比(S/N比) 27 3.5 主效果分析 28 3.6 變異數分析 28 3.7 反應曲面法 31 3.7.1 一階迴歸模型 32 3.7.2 二次迴歸模型 32 3.7.3 誤差值 32 3.7.4 迴歸模型的適應性 33 3.8 粒子群最佳演算法 34 3.8.1 數學模式 35 3.8.2 多目標問題數學模式 38 3.9 多品質特性最佳化參數設計流程 39 第4章 實驗步驟規劃 40 4.1 實驗流程及流程圖 40 4.2 實驗規劃 42 4.3 實驗藥品 44 4.4 實驗設備 46 第5章 實驗結果 50 5.1 光學感壓膠單品質最佳化實驗數據分析 50 5.1.1 2-EHA實驗透光度最佳化 50 5.1.2 2-EHA實驗霧度最佳化 53 5.1.3 2-EHA實驗剝離強度最佳化 56 5.1.4 2-EHA實驗折射率最佳化 59 5.2 光學感壓膠多品質最佳化實驗數據分析 62 5.2.1 2-EHA多品質實驗數據 62 5.3 OLIGOMER探討 64 5.3.1 寡聚物及光學感壓膠實驗探討 65 5.3.2 分子量對於寡聚物影響 104 5.4 重工性 105 5.5 本研究結果與昕碩光學感壓膠比較 107 第6章 結論 108 參考文獻 110

    [1] P. R. Raja, A. G. Hagood, M. A. Peters, S. G. Croll, “Evaluation of natural rubber latex-based PSAs containing aliphatic hydro-carbon tackifier dispersions with different softening points—Adhesive properties at different conditions.” Interna-tional Journal of Adhesion and Adhesives, Vol. 41, pp. 160-170, 2013.
    [2] Z. Czech, R. Pełech, “The thermal degradation of acrylic pres-sure-sensitive adhesives based on butyl acrylate and acrylic ac-id.” Progress in organic coatings, Vol, 65, No, 1, pp. 84-87, 2009.
    [3] P. R. Raja, A. G. Hagood, M. A. Peters, S. G. Croll, “Evaluation of natural rubber latex-based PSAs containing aliphatic hydro-carbon tackifier dispersions with different softening points—Adhesive properties at different conditions.” Interna-tional Journal of Adhesion and Adhesives, Vol. 41, pp. 160-170, 2013.
    [4] W. Li, L. Bouzidi, S. S. Narine, “Current research and develop-ment status and prospect of hot-melt adhesives: A review.” In-dustrial & Engineering Chemistry Research, Vol. 47, No. 20, pp. 7524-7532, 2008.
    [5] S. W. Lee, J. W. Park, C. H. Park, H. J. Kim, “Enhanced optical properties and thermal stability of optically clear adhesives.” International Journal of Adhesion and Adhesives, Vol. 50, pp. 93-95, 2014.
    [6] M. Senthilkumar, J. Mathiyarasu, J. Joseph, K. L. N. Phani, V. Yegnaraman, “Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization.” Materials Chemistry and Physics, Vol. 108, No. 2, pp. 403-407, 2008.
    [7] T. S. Bejitual, K. Ramji, A. J. Kessman, K. A. Sierros, D. R. Cairns, “Corrosion of an amorphous indium tin oxide film on polyethylene terephthalate at low concentrations of acrylic acid.” Materials Chemistry and Physics, Vol. 132, No. 2, pp. 395-401, 2012.
    [8] R. Jovanović, M. A. Dube, “Emulsion‐Based Pressure‐Sensitive Adhesives: A Review.” Journal of Macromolecular Science, Part C: Polymer Reviews, Vol. 44, No. 1, pp. 1-51, 2004.
    [9] 薛敬和,黏著劑全書-材料與技術,高立圖書有限公司,第22頁,1986。
    [10] F. Wang, J. Q. Hu, W. P. Tu, “Study on microstructure of UV-curable polyurethane acrylate films.” Progress in Organic Coatings, Vol. 62, No. 3, pp. 245-250, 2008.
    [11] S. Kim, S. W. Lee, D. H. Lim, J. W. Park, C. H. Park, H. J. Kim, “Optical properties and adhesion performance of acrylic PSAs; influence of functionalized monomer and curing agent.” Journal of Adhesion Science and Technology, Vol. 27, No, 21, pp. 2265-2277, 2013.
    [12] N. Bhore, P. Mahanwar, “Study of acrylic emulsion for ultravi-olet curable pressure sensitive adhesives and its properties.” Pigment & Resin Technology, Vol. 40, No. 6, pp. 374-378, 2011.
    [13] S. Kim, S. W. Lee, D. H. Lim, J. W. Park, C. H. Park, H. J. Kim, “Fabrication of optically clear acrylic pressure–sensitive adhe-sive by photo-polymerization: UV-curing behavior, adhesion performance, and optical properties.” Journal of Adhesion Sci-ence and Technology, Vol. 27, No. 20, pp. 2177-2190, 2013.
    [14] S. J. Jang, S. S. Baek, J. Y. Kim, S. H. Hwang, “Preparation and adhesion performance of transparent acrylic pressure sensitive adhesives for touch screen panel.” Journal of Adhesion Science and Technology, Vol. 28, No. 19, pp. 1990-2000, 2014.
    [15] S. Dal Zilio, G. Della Giustina, G. Brusatin, M. Tormen, “Mi-crolens arrays on large area UV transparent hybrid sol–gel ma-terials for optical tools.” Microelectronic Engineering, Vol. 87, No. 5, pp. 1143-1146, 2010.
    [16] J. Kajtna, M. Krajnc, “Solventless UV crosslinkable acrylic pressure sensitive adhesives.” International Journal of Adhesion and Adhesives, Vol. 31, No. 8, pp. 822-831, 2011.
    [17] S. W. Lee, J. W.Park, Y. E. Kwon, S. Kim, H. J. Kim, E. A. Kim, J. Swiderska, “Optical properties and UV-curing behaviors of optically clear semi-interpenetrated structured acrylic pressure sensitive adhesives.” International Journal of Adhesion and Ad-hesives, Vol. 38, pp. 5-10, 2012.
    [18] C. H. Park, S. J. Lee, T. H. Lee, H. J. Kim, “Characterization of an acrylic polymer under hygrothermal aging as an optically clear adhesive for touch screen panels.” International Journal of Ad-hesion and Adhesives, Vol. 63, pp. 137-144, 2015.
    [19] C. H. Park, S. J. Lee, T. H. Lee, H. J. Kim, “Characterization of an acrylic pressure-sensitive adhesive blended with hydrophilic monomer exposed to hygrothermal aging: Assigning cloud point resistance as an optically clear adhesive for a touch screen pan-el.” Reactive and Functional Polymers, Vol. 100, pp. 130-141, 2016.
    [20] H. H. Chu, C. K. Wang, K. S. Chuang, C. Y. Chang, “Removable acrylic pressure-sensitive adhesives activated by UV-radiation.” Journal of Polymer Research, Vol. 21, No. 6, pp. 1-7, 2014.
    [21] A. M. Mohamed, R. Jafari, M. Farzaneh, “An optimization of superhydrophobic polyvinylidene fluoride/zinc oxide materials using Taguchi method.” Applied Surface Science, Vol. 288, pp. 229-237, 2014.
    [22] S. K. Das, P. Sahoo, “Tribological characteristics of electroless Ni–B coating and optimization of coating parameters using Taguchi based grey relational analysis.” Materials & Design, Vol. 32, No. 4, pp. 2228-2238, 2011.
    [23] C. P. Fung, P. C. Kang. “Multi-response optimization in friction properties of PBT composites using Taguchi method and prin-ciple component analysis.” Journal of materials processing technology, Vol. 170, No. 3, pp. 602-610, 2005.
    [24] S. Petrović, S. Stojadinović, L. Rožić, N. Radić, B. Grbić, R. Vasilić,. “Process modelling and analysis of plasma electrolytic oxidation of titanium for TiO2/WO3 thin film photocatalysts by response surface methodology.” Surface and Coatings Technol-ogy, Vol. 269, pp. 250-257, 2015.
    [25] X. Hu, L. Feng, W. Wei, A. Xie, S. Wang, J. Zhang, W. Dong, “Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly (N, N-dimethylacrylamide-co-2-hydroxyethyl methacrylate).” Car-bohydrate polymers, Vol. 105, pp. 135-144, 2014.
    [26] I. D. Weiner, J. W. Verlander, “Role of NH3 and NH4+ trans-porters in renal acid-base transport.” American Journal of Physiology-Renal Physiology, Vol. 300, No. 1, pp. F11-F23. 2011.
    [27] P. P. Hwang, M. Y. Chou, “Zebrafish as an animal model to study ion homeostasis.” Pflügers Archiv-European Journal of Physiol-ogy, Vol. 465, No. 9, pp. 1233-1247, 2013.
    [28] M. Senthilkumar, J. Mathiyarasu, J. Joseph, K. L. N. Phani, V. Yegnaraman, “Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization.” Materials Chemistry and Physics, Vol. 108, No. 2, pp. 403-407, 2008.
    [29] T. S. Bejitual, K. Ramji, A. J. Kessman, K. A. Sierros, D. R. Cairns, “Corrosion of an amorphous indium tin oxide film on polyethylene terephthalate at low concentrations of acrylic acid.” Materials Chemistry and Physics, Vol. 132, No. 2, pp. 395-401, 2012.
    [30] M. Wang, D. Chen, W. Feng, A. Zhong, “Synthesis and Charac-terization of Optically Clear Pressure-Sensitive Adhesive.” Ma-terials transactions, Vol. 56, No. 6, pp. 895-898, 2015.
    [31] A. Priyadarshi, L. Shimin, S. G. Mhaisalkar, R. Rajoo, E. H. Wong, V. Kripesh, E. B. Namdas, “Characterization of optical properties of acrylate based adhesives exposed to different temperature conditions.” Journal of applied polymer science, Vol. 98, No. 3, pp. 950-956, 2005.
    [32] K. Takahashi, M. Shimizua, K. Inabaa, K. Kishimotoa, Y. Inaob, T. Sugizakib, “Tack Performance of Pressure-sensitive Adhesive Tapes Under Tensile Loading.” International Journal of Adhesion & Adhesives, Vol. 45, pp. 90-97, 2013.
    [33] M. Michaelis, R. Brummer, C. S. Leopold, “Plasticization and Antiplasticization of an Acrylic Pressure Sensitive Adhesive by Ibuprofen and Their effect on the Adhesion Properties.” Euro-pean Journal of Pharmaceutics and Biopharmaceutics, Vol. 86, pp. 234-243, 2014.
    [34] Z. Czech, W. Arabczyk, A. Hełminiak, A. Kowalczyk, “Influence of Iron Carbide Filler in Carbon Matrix on the Adhesive Prop-erties of Acrylic Pressure-sensitive Adhesives.” International Journal of Adhesion & Adhesives, Vol. 40, pp. 210-214, 2013.
    [35] 魏杰,金養智,光固化塗料,化學工業出版社,第69-73頁,2005。
    [36] 王德海、江欞,紫外光固化材料-理論與應用,科學出版社,第85-89頁,2001。
    [37] I. Khan, B. T. Poh, “Effect of Molecular Weight and Testing Rate on Adhesion Property of Pressure-Sensitive Adhesives Prepared from Epoxidized Natural Rubber.” Materials and Design, Vol. 32, pp. 2513-2519, 2011.
    [38] J. Kindernay, A. Blažková, J. Rudá, V. Jančovičová, Z. Jaku-bı́ková, “Effect of UV light source intensity and spectral distri-bution on the photopolymerisation reactions of a multifunctional acrylated monomer.” Journal of Photochemistry and Photobiol-ogy A: Chemistry, Vol. 151, No. 1, pp. 229-236, 2002.
    [39] B. F. Dillman, N. Y. Kang, J. L. Jessop, “Solventless synthesis and free-radical photopolymerization of a castor oil-based acrylate oligomer.” Polymer, Vol. 54, No. 7, pp.768-1774, 2013.
    [40] A. Lopez, E. Degrandi, E. Canetta, J. L. Keddie, C. Creton, J. M. Asua, “Simultaneous free radical and addition miniemulsion polymerization: Effect of the diol on the microstructure of pol-yurethane-acrylic pressure-sensitive adhesives.” Polymer, Vol. 52, No. 14, pp. 3021-3030, 2011.
    [41] G. Xu, F. D. Blum, “Surfactant-enhanced free radical polymeri-zation of styrene in emulsion gels.” Polymer, Vol. 49, No. 15, pp. 3233-3238, 2008.
    [42] S. Karatas, C. Kızılkaya, N. Kayaman-Apohan, A. Güngör, “Preparation and characterization of sol–gel derived UV-curable organo-silica–titania hybrid coatings.” Progress in organic coat-ings, Vol. 60, pp. 140-147, 2007.
    [43] C. Decker, “UV-Radiation Curing of Adhesives.” Handbook of Adhesives and Sealants, Vol. 2, pp. 303-353, 2006.
    [44] 李輝煌,”田口方法-品質設計的原理與實務”,高立圖書出版股份有限公司,2000。
    [45] 葉怡成,”實驗計劃法-製程與產品最佳化”,五南圖書出版股份有限公司,2001。
    [46] 蘇朝墩,”產品穩健設計”,中華民國品質學會,1997。
    [47] H. H. Lee, “Taguchi methods: principles and practices of quality design.” Gau Lih Book Co, Taipei, Taiwan, 2011.
    [48] A. Qasim, S. Nisar, A. Shah, M. S. Khalid, M. A. Sheikh, “Op-timization of process parameters for machining of AISI-1045 steel using Taguchi design and ANOVA.” Simulation Modelling Practice and Theory, Vol. 59, pp.36-51, 2015.
    [49] A. Prakash, G. Sarkhel, K. Kumar, “Strength Optimization for Kaolin Reinforced Epoxy Composite Using Taguchi Method.” Materials Today: Proceedings, Vol. 4, pp. 2380-2388, 2015.
    [50] B. N. Ramesh, B. Suresha, ”Optimization of tribological pa-rameters in abrasive wear mode of carbon-epoxy hybrid com-posites.” Materials & Design, Vol. 59, pp. 38-49, 2014.
    [51] S. Liu, Y. Fang, M. Lv, S. Wang, L. Chen, “Optimization of the production of organic solvent-stable protease by Bacillus sphaericus DS11 with response surface methodology.” Biore-source technology, Vol. 101, No. 20, pp. 7924-7929, 2010.
    [52] S. Khosravian, M. Montazer, R. M. Malek, T. Harifi, “In situ synthesis of nano ZnO on starch sized cotton introducing nano photo active fabric optimized with response surface methodol-ogy.” Carbohydrate polymers, Vol. 132, pp. 126-133, 2015.
    [53] J. Kennedy, R. C, Eherhart and Y. Shi, “Swarm Intelligence”, San Francisco: organ Kaufmann, 2001.
    [54] L. Qin, J. Qiu, M. Liu, S. Ding, L. Shao, S. Lü, X. Fu, “Me-chanical and thermal properties of poly (lactic acid) composites with rice straw fiber modified by poly (butyl acrylate).” Chemical Engineering Journal, Vol. 166, No. 2, pp. 772-778. 2011
    [55] Y. Lee, I. Akiba, S. Akiyama, “Syntheses of poly (methyl meth-acrylate)/poly (dimethyl siloxane) graft copolymers and their surface enrichment of their blend with acrylate adhesive copol-ymers.” Journal of applied polymer science, Vol, 86, No. 7, pp. 1736-1740. 2002.
    [56] L. Zhang, Y. Cao, L. Wang, L. Shao, Y. Bai, “Synthesis and properties of soap-free P (2-EHA-BA) emulsion for removable pressure sensitive adhesives.” RSC Advances, Vol. 4, No. 88, pp. 47708-47713. 2014.
    [57] J. Kajtna, M. Krajnc, “UV crosslinkable microsphere pressure sensitive adhesives—influence on adhesive properties.” Interna-tional Journal of Adhesion and Adhesives, Vol. 31, No. 1, pp. 29-35. 2011.
    [58] K. Sohail, I. U. Khan, Y. Shahzad, T. Hussain, N. M. Ranjha, “pH-sensitive polyvinylpyrrolidone-acrylic acid hydrogels: Im-pact of material parameters on swelling and drug release.” Bra-zilian Journal of Pharmaceutical Sciences, Vol. 50, No. 1, pp. 173-184. 2014.
    [59] C. Alvarez-Gayosso, M. A. Canseco, R. Estrada, J. Pala-cios-Alquisira, J. Hinojosa, V. M. Castaño, “Preparation and microstructure of cobalt (III) poly (acrylate) hybrid materials.” International Journal of Basic and Applied Sciences, Vol. 4, No. 3, pp. 255, 2015.
    [60] H. Ortega-Ortiz, B. Gutiérrez-Rodríguez, G. Cadenas-Pliego, L. I. Jimenez, “Antibacterial activity of chitosan and the interpoly-electrolyte complexes of poly (acrylic acid)-chitosan.” Brazilian Archives of Biology and Technology, Vol, 53, No, 3, pp. 623-628, 2010.
    [61] E. Meaurio, L. C. Cesteros, I. Katime, “FTIR study of hydrogen bonding of blends of poly (mono n-alkyl itaconates) with poly (N, N-dimethylacrylamide) and poly (ethyloxazoline).” Macro-molecules, Vol. 30, No. 16, pp. 4567-4573, 1997.
    [62] A. S. Hadj Hamou, S. Djadoun, “Interpolymer Complexes of Poly (N, N‐Dimethylacrylamide/Poly (Styrene‐co‐Acrylic Acid): Thermal Stability and FTIR Analysis.” Macromolecular Sympo-sia, Vol. 303, No. 1, pp. 114-122, 2011.
    [63] M. Babič, D. Horák, P. Jendelová, K. Glogarová, V. Herynek, M. Trchová, E. Syková, “Poly(N, N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling.” Bioconjugate chemistry, Vol. 20, No. 2, pp. 283-294, 2009.
    [64] M. D. Bhabhe, P. S. Galvankar, V. M. Desai, V. D. Athawale, “Copolymers of methyl methacrylate and acrylate comonomers: synthesis and characterization.” Journal of applied polymer sci-ence, Vol. 56, No. 4, pp. 485-494, 1995.
    [65] G. Zhang, H. Zhang, X. Zhang, S. Zhu, L. Zhang, Q. Meng, B. Yang, “Embedding graphene nanoparticles into poly (N, N′-dimethylacrylamine) to prepare transparent nanocomposite films with high refractive index.” Journal of Materials Chemistry, Vol. 22, No. 39, pp. 21218-21224, 2012.
    [66] M. B. Novikov, A. Roos, C. Creton, M. M. Feldstein, “Dynamic mechanical and tensile properties of poly (N-vinyl pyrrolidone)–poly (ethylene glycol) blends.” Polymer, Vol, 44, No. 12, pp. 3561-3578, 2003.
    [67] Y. Liu, W. Hu, Z. Lu, C. M. Li, “Photografted poly (methyl methacrylate)-based high performance protein microarray for hepatitis B virus biomarker detection in human serum.” Med-ChemComm, Vol. 1, No. 2, pp. 132-135, 2010.
    [68] J. Tan, W. Liu, H. Wang, Y. Sun, S. Wang, “Preparation and properties of UV-curable waterborne comb-like (meth) acrylate copolymers with long fluorinated side chains. Progress in Or-ganic Coatings, Vol. 94, pp. 62-72, 2016.
    [69] Z. Czech, M. Wesolowska, “Development of solvent-free acrylic pressure-sensitive adhesives.” European Polymer Journal, Vol. 43, No, 8, pp. 3604-3612, 2007.
    [70] Y. J. Park, D. H. Lim, H. J. Kim, D. S. Park, I. K.Sung, “UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers.” International Journal of Adhesion and Adhesives, Vol. 29, No. 7, pp. 710-717, 2009.
    [71] S. J. Jang, S. S. Baek, J. Y. Kim, S. H. Hwang, “Preparation and adhesion performance of transparent acrylic pressure sensitive adhesives for touch screen panel.” Journal of Adhesion Science and Technology, Vol. 28, No. 19, pp. 1990-2000, 2014.
    [72] Y. J. Park, D. H. Lim, H. J. Kim, D. S. Park, I. K. Sung, “UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers.” International Journal of Adhesion and Adhesives, Vol, 29, No, 7, pp. 710-717, 2009.
    [73] M. Miyamoto, A. Ohta, Y. Kawata, M. Nakabayashi. “Control of refractive index of pressure-sensitive adhesives for the optimi-zation of multilayered media.” Japanese journal of applied physics, Vol. 46, pp. 3978, 2007.
    [74] Z. Czech, L. Shao, A. Kowalczyk, J. Kabatc, X. Q. Cheng, J. Świderska, “Photocrosslinking of solvent-based acrylic pres-sure-sensitive adhesives (PSA) by the use of selected photoiniti-ators type I.” Journal of Adhesion Science and Technology, Vol. 27, No. 22, pp. 2398-2410, 2013.
    [75] J. I. Moon, Y. H. Lee, H. J. Kim, S. Schwartz, M. Rafailovich, J. Sokolov, “Investigation of the peel test for measuring self-cleanable characteristic of fluorine-modified coatings.” Polymer Testing, Vol. 31, No. 3, pp. 433-438, 2012.
    [76] Y. Peykova, O. V. Lebedeva, A. Diethert, P. Müller-Buschbaum, N. Willenbacher, “Adhesive properties of acrylate copolymers: Effect of the nature of the substrate and copolymer functionali-ty.” International Journal of Adhesion and Adhesives, Vol. 34, pp. 107-116, 2012.
    [77] S. S. Baek, S. H. Hwang, “Preparation and adhesion perfor-mance of transparent acrylic pressure-sensitive adhesives con-taining menthyl acrylate.” Polymer Bulletin, Vol. 73, No, 3, pp. 687-701. 2016.
    [78] Y. J. Park, D. H. Lim, H. J. Kim, D. S. Park, I. K. Sung, “UV-and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers.” International Journal of Adhesion and Adhesives, Vol. 29, No. 7, pp. 710-717, 2009.
    [79] M. Zhu, Z. Lin, C. Fang, “Properties of single-component acrylic pressure-sensitive adhesives synthesized using tert-butyl per-oxypivalate initiator.” Polymer Science Series A, pp. 1-7, 2016.
    [80] S. S. Baek, S. J. Jang, S. H. Hwang, “Preparation and adhesion performance of transparent acrylic pressure sensitive adhesives: effects of substituent structure of acrylate monomer.” Interna-tional Journal of Adhesion and Adhesives, Vol. 64, pp. 72-77, 2016.
    [81] Z. Czech, A. Kowalczyk, J. Kabatc, J. Świderska, “Photoreactive UV-crosslinkable solvent-free acrylic pressure-sensitive adhe-sives containing copolymerizable photoinitiators based on ben-zophenones.” European Polymer Journal, Vol. 48, No. 8, pp. 1446-1454, 2012.

    QR CODE