簡易檢索 / 詳目顯示

研究生: 林益瑋
Yi-wei Lin
論文名稱: AZ31與AZ61鎂合金熱擠製程之最佳化研究
Optimal Condition Study on Hot Extrusion Processes of AZ31 and AZ61 Magnesium Alloys
指導教授: 向四海
Su-hai hsiang
口試委員: 林榮慶
Zone-ching Lin  
黃佑民
You-min Huang
王國雄
Kuo-shong Wang
黃永茂
Yeong-maw Hwang
徐瑞坤
Ray-quan Hsu
陳復國
Fuh-kuo Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 181
中文關鍵詞: 鎂合金熱間擠製最佳化模糊理論田口方法
外文關鍵詞: Magnesium alloy, Hot extrusion, Optimization, Fuzzy theory, Taguchi method
相關次數: 點閱:305下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要目的為探討鎂合金之熱間擠製加工之各種產品的成形性與尋找可獲得最佳機械性質之製程開發,使用田口方法、ANOVA分析、模糊邏輯理論與類神經網路等各種方法,不僅對單一品質特性進行探討,更擴充至多重品質特性之探討,嘗試尋求最適化製程參數組合,並針對各種新產品之研發建立一套可獲得最佳成品之加工參數之預測模式。
    本論文共有五項研究主題:(一)應用田口方法與ANOVA分析,探討製程參數對AZ31與AZ61鎂合金管材熱間擠製成品之各種機械性質之影響。將擠製成形之管材進行拉伸試驗與壓平試驗,並針對所得之結果進行比較分析,尋求可獲得最佳抗拉強度之管材熱間擠製製程參數組合,同時探討製程參數對擠製管之顯微組織之影響。(二)探討高擠製比之鎂合金板材熱間擠製加工。由於高擠製比之鎂合金板材需採用變速法,才能擠製出健全之板材,因此在擠製加工過程中須尋找出速度調變時機點。本研究將彙整各實驗結果,引進模糊理論據此來建立模糊理論之預測模式。使用AZ31與AZ61鎂合金在模具半角20°、30°與40°等三組錐度模下,進行板材熱間擠製加工之調變時機點及抗拉強度之預測。(三)結合模糊理論與田口法,探討AZ31與AZ61鎂合金板材之熱間擠製加工時,在兼顧擠製負荷之望小品質特性與抗拉強度之望大品質特性等之多重品質特性指標條件下,尋求最適化製程參數之組合。(四)將產品之型式自管材、板材等擴充至市場上之實際產品,以鎂合金腳踏車攜車架為載具,應用模糊田口方法探討AZ31與AZ61鎂合金腳踏車攜車架之熱間擠製加工,並考慮多重品質特性指標之情況下,尋求壓平強度、T槽破壞強度與擠製負荷之多重品質特性指標之最適化製程參數組合,同時探討鎂合金與鋁合金腳踏車攜車架之機械性質的差異。(五)將上述之實驗結果資料,建立類神經網路分析模式,預測AZ61鎂合金結構件熱間擠製加工後之抗拉強度,並探討在不同材料加熱溫度與擠製速度下,其抗拉強度之變化情形,且將其結果與AZ31鎂合金及A6061鋁合金結構件之機械性質進行比較分析。
    本研究中引進模糊理論,配合實驗所彙整之資料庫建立對鎂合金板材熱間擠製之變速時機點與抗拉強度之預測分析模式,能準確的掌握變速時機點與預測成品之抗拉強度,大幅提高實驗之效率。另外,也將模糊理論結合田口方法,針對產品之多重品質特性指標進行分析,尋求能夠以較低之擠製負荷獲得較高機械性質之最適化製程參數組合。依據本研究所進行之各實驗資料所建立之類神經網路之預測分析模式,也可準確的預測擠製後成品之機械性質。希望本研究之成果,能提供鎂合金成形加工之學術界與產業界之研究人員參考。


    The main purposes of this study are to investigate the forming behaviors of various products and to develop the optimal manufacturing process for obtaining the magnesium alloys products with good mechanical properties under hot extrusion process. Taguchi method, analysis of ANOVA, fuzzy logic theory and artificial neural network are used, not only to investigate the individual quality characteristic, but expand its application to the multiple performance characteristics index (MPCI) of optimal combination of process parameters. In this study, various new products are produced, and a prediction model of searching optimal combination process parameters of product is established. The five topics are involved in this paper:
    1.The Taguchi method and analysis of ANOVA are applied to analyze the influence of process parameters on the mechanical properties of magnesium alloy tubes under hot extrusion. Tensile test and flattening test of the extruded tubes are carried out, and the test results are analyzed to find the optimal combination of process parameters under hot extrusion of tubes. The microstructures of extruded tubes are observed to clarify the influence of process parameters on the grain size.
    2.The hot extrusion of magnesium alloy sheet under high extrusion ratio is investigated. According to the former reports, the variable speed method can extrude perfect magnesium alloy sheets under high extrusion ratio. In variable speed method, the speed adjustment timing should be determined before the extrusion experiment. In this study, experimental data of different products are collected, then the fuzzy theory is employed to establish the prediction model of magnesium alloy extrusion. This model is applied to predict the speed adjustment timing and the tensile strength of the AZ31 and AZ61 magnesium alloy sheets under hot extrusion with the semi die angles of 20°, 30° and 40°, respectively.
    3.Fuzzy theory and Taguchi method are combined to investigate the hot extrusion process of the magnesium alloy sheets. Not only quality characteristic of the smaller-the-better of the extrusion load but also quality characteristic of the larger-the-better of the tensile strength are considered in the method of MPCI to find out the optimal combination of process parameters.
    4.The shapes of extruded Mg product are expanded from tube and sheet to more complicated products of the commercial market. The fuzzy-based Taguchi method is used to obtain the optimal process parameters for the hot extrusion of AZ31 and AZ61 magnesium alloy bicycle carriers by the approach of MPCI. The variables considered in MPCI inference model are flattening strength, T-slot fracture strength and extrusion load. In addition, the mechanical properties of the bicycle carriers made from magnesium alloy and aluminum alloy are compared.
    5.According to the data of experimental results an artificial neural network (ANN) analytical model is established, the tensile strength of AZ61 structural parts under hot extrusion is analyzed. Through this analytical model, the influence of billet heating temperature and extrusion speed on the tensile strength of the structural parts are investigated. Finally, the mechanical properties of AZ61 magnesium alloy products are compared with those of AZ31 magnesium alloy and A6061 aluminum alloy.
    In this study, the fuzzy theory is introduced to establish the prediction and analysis model for obtaining speed adjustment timing and tensile strength of the magnesium alloy sheets under hot extrusion. It can catch the speed adjustment timing under hot extrusion and predict tensile strength of the extruded parts accurately, eventually the effectiveness of the experiments can be improved. Besides, fuzzy theory and Taguchi method are combined to analyze the MPCI of product. Through MPCI inference model, a fabrication method with less extrusion load and better mechanical properties under hot extrusion can be obtained. According to the experimental data collected in this study, an ANN prediction model can be established, and the mechanical properties of extruded products can be predicted accurately. The models established in this study and analytical results of this study can offer insight to the researchers and industries of magnesium alloy forming.

    摘要 I ABSTRACT III 誌謝 VI 目錄 VII 圖目錄 XIV 表目錄 XIX 符號索引 XXII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 擠製成形加工之文獻 3 1.2.2 田口實驗計劃法之文獻 5 1.2.3 模糊理論之文獻 6 1.2.4 多重品質特性指標之文獻 7 1.2.5 類神經網路之文獻 8 1.2.6 鎂合金相關製程之文獻 9 1.3 論文架構 13 第二章 研究理論基礎 15 2.1 擠製加工原理 15 2.1.1 擠製加工之型式 15 2.1.2擠製模之型式 19 2.2 鎂及鎂合金 21 2.2.1 鎂合金之特性 21 2.2.2 添加合金元素對鎂合金之影響 22 2.2.3 鎂合金命名之規範 24 2.3 田口方法 26 2.3.1 田口式直交表 27 2.3.2 品質計量法 27 2.3.3 變異數分析理論 29 2.3.4 加法預測模式 31 2.4 模糊理論 32 2.4.1 模糊系統之架構 32 2.4.2 模糊化機構 33 2.4.3 模糊規則庫 33 2.4.4 模糊推論引擎 34 2.4.5 去模糊化機構 34 2.5 類神經網路 36 2.5.1 生物神經元 36 2.5.2 人工神經元 38 2.5.3 類神經網路的運作過程 39 2.5.4 倒傳遞類神經網路 39 第三章 鎂合金管材之熱間擠製加工之探討 42 3.1 實驗設備與機械性質之試驗 42 3.1.1 熱間擠製成形機 42 3.1.2 壓平試驗與拉伸試驗 43 3.2 實驗規劃 45 3.2.1 實驗材料 46 3.2.2 管材之熱間擠製加工 46 3.2.2 直交表之實驗參數規劃 46 3.3 壓平試驗之結果分析 49 3.4 管材最大抗拉強度之最佳製程參數分析 50 3.4.1 管材之抗拉強度分析 50 3.4.2 最佳製程參數組合之分析 51 3.5 驗證實驗與顯微組織之觀察 53 3.5.1 驗證實驗 53 3.5.2 不同製程參數對顯微組織之影響 54 3.6 變異數分析 56 3.7 結論 58 第四章 高擠製比鎂合金板材之擠製製程之探討 59 4.1 實驗規劃 59 4.1.1 板材之熱間擠製加工 60 4.1.2 板材擠製模具 61 4.1.3 實驗參數之設定與規劃 61 4.2 變速法 65 4.3 變速時機點之模糊預測分析 68 4.3.1 變速時機點之模糊預測系統的建構 68 4.3.2 不同模具半角之變速時機點的預測分析 70 4.3.3 變速時機點之模糊預測系統的驗證實驗 73 4.3.4 模具半角30°之變速時機點的預測分析 74 4.4 板材抗拉強度之模糊預測系統 77 4.4.1 擠製板材之抗拉強度 77 4.4.2 抗拉強度之模糊預測系統的建構 78 4.4.3 板材抗拉強度之模糊預測系統的驗證實驗 80 4.5 結論 81 第五章 鎂合金板材之擠製加工製程最適化之分析 83 5.1 實驗規劃 84 5.1.1 板材擠製加工與模具之規劃 84 5.1.2 實驗參數之設定 85 5.2 建構板材多重品質特性指標之模糊邏輯系統 85 5.3 板材擠製加工之多重品質特性指標最適化製程參數分析 87 5.3.1 抗拉強度、擠製負荷與伸長率 87 5.3.2 抗拉強度與擠製負荷之S/N比及正規化 89 5.3.3 板材擠製加工之多重品質特性指標最適化製程參數組合 91 5.4 驗證實驗 93 5.4.1 變異數分析 93 5.4.2 板材多重品質特性指標之驗證實驗 94 5.5 結論 97 第六章 鎂合金攜車架之擠製加工製程最適化之分析 98 6.1 實驗規劃 99 6.1.1 研究流程與步驟 99 6.1.2 攜車架之擠製加工 99 6.1.3 直交表之實驗規劃 102 6.1.4 壓平強度與T槽破壞強度之試驗 103 6.2 建構攜車架多重品質特性指標之模糊邏輯系統 104 6.3 攜車架擠製加工之多重品質特性指標之最適化製程參數分析 108 6.3.1 壓平強度、T槽破壞強度與擠製負荷之S/N比及正規化 108 6.3.2 攜車架擠製加工之多重品質特性指標最適化製程參數組合 110 6.4 驗證實驗 113 6.4.1 變異數分析 113 6.4.2 攜車架多重品質特性指標之驗證實驗 114 6.5 不同材質攜車架之擠製負荷與機械性質之比較分析 115 6.5.1 AZ31與AZ61攜車架之擠製負荷與機械性質之比較 115 6.5.2 鎂合金與鋁合金攜車架之比較 118 6.6 結論 120 第七章 AZ61鎂合金結構件熱間擠製加工之探討 121 7.1 結構件之擠製加工 121 7.2 結構件之類神經網路分析模式的建構 123 7.2.1 類神經網路訓練例與追加實驗 123 7.2.2 類神經網路分析模式之建構 124 7.3 類神經網路模式預測分析之結果 126 7.3.1 不同材料加熱溫度與擠製速度下之抗拉強度預測 126 7.3.2 類神經網路分析之驗證實驗 128 7.4 不同材質結構件之機械性質與擠製負荷之比較分析 129 7.4.1 AZ61與AZ31鎂合金結構件斷面硬度之分析 129 7.4.2 鎂合金與鋁合金結構件之擠製負荷與機械性質之比較 130 7.5 結論 133 第八章 結論 134 參考文獻 137 附錄A 鎂合金擠製之實驗參數及其抗拉強度 148 附錄B 類神經網路訓練例之訓練樣本 151 作者簡介 154 授權書 155

    1. 葉哲政,從微笑理論看我國鎂合金產業未來發展方向,ITIS產業資訊服務網,線上資料,金屬中心 (2004)。
    2. 陳中一,2007非鐵金屬特輯-鎂金屬篇,財團法人金屬工業研究發展中心 (2007)。
    3. B.P.P.A. Gouveia, J.M.C. Rodrigues, N. Bay and P.A.F. Martins, Finite-element modeling of cold forward extrusion, Journal of Materials Processing Technology, Vol.94, pp.85-93 (1999).
    4. M. Bakhshi-Jooybari, A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process, Journal of Materials Processing Technology, Vol.125-126, pp.369-374 (2002).
    5. Y.T. Kim, K. Ikeda and T. Murakami, Metal flow in porthole die extrusion of aluminium, Journal of Materials Processing Technology, Vol.121, pp.107-115 (2002).
    6. H.R. Darani and M. Ketabchi, Simulation of “L” section extrusion using upper bound method, Materials and Design, Vol.25, pp.535-540 (2004).
    7. K.Y. Rhee, W.Y. Han, H.J. Park and S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its materials characteristics, Materials Science and Engineering A, Vol.384, pp.70-76 (2004).

    8. M. Chandrasekaran and Y.M.S. John, Effect of materials and temperature on the forward extrusion of magnesium alloys, Material Science and Engineering A, Vol.381, pp.308-319 (2004).
    9. T. Murai, S. Matsuoka, S. Miyamoto and Y. Oki, Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions, Journal of Materials Processing Technology, Vol.141, pp.207-212 (2003).
    10. R.Ye. Lapovok, M.R. Barnett and C.H.J. Davies, Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation, Journal of Materials Processing Technology, Vol.146, pp.408-414 (2004).
    11. S.H. Hsiang and J.L. Kuo, An investigation on the hot extrusion process of magnesium alloy sheet, Journal of Materials Processing Technology, Vol.140, No.2, pp. 6-12 (2003).
    12. Y. Chen, Q. Wang, J. Peng, C. Zhai and W. Ding, Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy, Journal of Materials Processing Technology, Vol.182, pp. 281-285 (2007).
    13. Y. Hu, Z. Lai and Y. Zhang, The study of cup-rod combined extrusion process of magnesium alloy (AZ61A), Journal of Materials Processing Technology, Vol.187-188, pp.649-652 (2007).
    14. S.H. Hsiang, Y.W. Lin and J.L. Kuo, Extrusion of magnesium alloy sheet under multi speed method, Journal of the Chinese Society of Mechanical Engineers, Vol.26, No.4, pp.427-433 (2005).
    15. S.H. Hsiang, J.L. Kuo and F.Y. Yang, Using artificial neural networks to investigate the influence of temperature on hot extrusion of AZ61 magnesium alloy, Journal of Intelligent Manufacturing, Vol.17, No.2, pp. 191-201 (2006).
    16. D.H. Wu and M.S. Chang, Use of Taguchi method to develop a robust design for the magnesium alloy die casting process, Material Science and Engineering A, Vol.379, pp.366-371 (2004).
    17. G.P. Syrcos, Die casting process optimization using Taguchi methods, Journal of Materials Processing Technology, Vol.135, pp.68-74 (2003).
    18. K. Yang, E.C. Teo and F.K. Fuss, Application of Taguchi method in optimization of cervical ring cage, Journal of Biomechanics, Vol.40, pp.3251-3256 (2007).
    19. A.R. Khoei, I. Masters and D.T. Gethin, Design optimization of aluminium recycling processes using Taguchi technique, Journal of Materials Processing Technology, Vol.127, pp.96-106 (2002).
    20. S.W. Lee, Study on the forming parameters of the metal bellows, Journal of Materials Processing Technology, Vol.130-131, pp.47-53 (2002).
    21. R.S. Chen, H.C. Lin and C. Kung, Optimal dimension of PQFP by using Taguchi method, Composite Structures, Vol.49, pp.1-8 (2000).
    22. J.A. Ghani, I.A. Choudhury and H.H. Hassan, Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology, Vol.145, pp.84-92 (2004).
    23. S.H. Hsiang and J.L. Kuo, Applying ANN to predict the forming load and mechanical property of magnesium alloy under hot extrusion, International Journal of Advanced Manufacturing Technology, Vol.26, pp.970-977 (2005).
    24. L.A. Zadeh, Fuzzy sets, Information and Control, Vol.8, pp.338-353 (1965).
    25. Y.H. Lee and R. Kopp, Application of fuzzy control for a hydraulic forging machine, Fuzzy Sets and Systems, Vol.118, pp.99-108 (2001).
    26. Z.J. Luo and Y.D. Liu, A novel method for predicting the grain size of superalloy forgings based on the fuzzy method and the FEM, Journal of Materials Processing Technology, Vol.99, pp.246-249 (2000).
    27. J.Y. Jung and Y.T. Im, Fuzzy control algorithm for the prediction of tension variations in hot rolling, Journal of Materials Processing Technology, Vol.96, pp.163-172 (1999).
    28. M.D. Jean, B.T. Lin and J.H. Chou, Design of a fuzzy logic approach for optimization reinforced zirconia depositions using plasma sprayings, Surface & Coatings Technology, Vol.201, pp.3129-3138 (2006).
    29. A.V. Subba Rao and D.K. Pratihar, Fuzzy logic-based expert system to predict the results of finite element analysis, Knowledge-Based Systems, Vol.20, pp.37-50 (2007).
    30. S. Akkurt, G. Tayfur and S. Can, Fuzzy logic model for the prediction of cement compressive strength, Cement and Concrete Research, Vol.34, pp.1429-1433 (2004).
    31. J.L. Lin, K.S. Wang, B.H. Yan and Y.S. Tarng, Optimization of the electrical discharge machining process based on the Taguchi method with fuzzy logics, Journal of Materials Processing Technology, Vol.102, pp.48-55 (2000).

    32. Y.F. Tzeng and F.C. Chen, Multi-objective optimization of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach, Materials and Design, Vol.28, pp.1159-1168 (2007).
    33. C.L. Lin, J.L. Lin and T.C. Ko, Optimization of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method, International Journal of Advanced Manufacturing Technology, Vol.19, pp.271-277 (2002).
    34. M. Inamdar, P.P. Date, K. Narasimhan, S.K. Maiti and U.P. Singh, Development of an artificial neural network to predict springback in air vee benging, International Journal of Advanced Manufacturing Technology, Vol.16, pp.376-381 (2000).
    35. J.C. Lin, Prediction of rolling force and deformation in three-dimensional cold rolling by using the finite-element method and a neural network, International Journal of Advanced Manufacturing Technology, Vol.20, pp.799-806 (2002).
    36. K. Hans Raj, R.S. Sharma, S. Srivastava and C. Patvardhan, Modeling of manufacturing processes with ANNs for intelligent manufacturing, International Journal of Machine Tools & Manufacture, Vol.40, pp.851-868 (2000).
    37. D.J. Kim and B.M. Kim, Application of neural network and FEM for metal forming processes, International Journal of Machine Tools & Manufacture, Vol.40, pp. 911-925 (2000).
    38. Y.Y. Li and J. Bridgwater, Prediction of extrusion pressure using an artificial neural network, Power Technology, Vol.108, pp.65-73 (2000).

    39. S.H. Hsiang and J.L. Kuo, Application of ANN to the hot extrusion of magnesium alloy sheets, International Journal of Advanced Manufacturing Technology, Vol.25, pp.292-300 (2005).
    40. M.S. Ozerdem and S. Kolukisa, Artificial neural network approach to predict mechanical properties of hot rolled, nonresulfurized, AISI 10xx series carbon steel bars, Journal of Materials Processing Technology, Vol.199, pp.437-439 (2008).
    41. K.K.S. Tong, B.H. Hu, X.P. Niu and I. Pinwill, Cavity pressure measurements and process monitoring for magnesium die casting of a thin-wall hand-phone component to improve quality, Journal of Materials Processing Technology, Vol.127, pp.238-241 (2002).
    42. Y.J. Huang, B.H. Hu, I. Pinwill, W. Zhou and D.M.R. Taplin, Effect of process settings on the porosity levels of AM60B magnesium die castings, Materials and Manufacturing Processes, Vol.15, No.1, pp.97-105 (2000).
    43. Z. Zhang, R. Tremblay and D. Dubé, Microstructure and mechanical properties of ZA104 (0.3–0.6Ca) die-casting magnesium alloys, Materials Science and Engineering A, Vol.385, pp.286-291 (2004).
    44. S.G. Lee, A.M. Gokhale, G.R. Patel and M. Evans, Effect of process parameters on porosity distributions in high-pressure die-cast AM50 Mg-alloy, Materials Science and Engineering A, Vol.727, pp.99-111 (2006).
    45. C.D. Lee, Dependence of tensile properties of AM60 magnesium alloy on microporosity and grain size, Materials Science and Engineering A, Vol.454-455, pp.575-580 (2007).
    46. C.H. Cáceres, W.J. Poole, A.L. Bowles and C.J. Davidson, Section thickness, macrohardness and yield strength in high-pressure diecast magnesium alloy AZ91, Materials Science and Engineering A, Vol.402, pp.269-277 (2005).
    47. A.K. Dahle, S. Sannes, D.H. St. John and H. Westengen, Formation of defect bands in high pressure die cast magnesium alloys, Journals of Light Metals, Vol.1, pp.99-103 (2001).
    48. I.P. Moreno, T.K. Nandy, J.W. Jones, J.E. Allison and T.M. Pollock, Microstructural characterization of a die-cast magnesium-rare earth alloy, Scripta Materialia, Vol.45, pp.1423-1429 (2001).
    49. X. Du and E. Zhang, Microstructure and mechanical behaviour of semi-solid die-casting AZ91D Magnesium Alloy, Materials Letters, Vol.61, pp.2333-2337 (2007).
    50. H. Takuda, T. Yoshi and N. Hatta, Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet, Journal of Materials Processing Technology, Vol.89-90, pp.135-140 (1999).
    51. F.K. Chen, T.B. Huang and C.K. Chang, Deep drawing of square cups with magnesium alloy AZ31 sheets, International Journal of Machine Tools & Manufacture, Vol.43, pp.1553-1559 (2003).
    52. Y.S. Lee, M.C. Kim, S.W. Kim, Y.N. Kwon, S.W. Choi, and J.H. Lee, Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming, Journal of Materials Processing Technology, Vol.187-188, pp.103-107 (2007).
    53. Q.F. Chang, D.Y. Li, Y.H. Peng, and X.Q. Zeng, Experimental and numerical study of warm deep drawing of AZ31 magnesium alloy sheet, International Journal of Machine Tools & Manufacture, Vol.47, pp.436-443 (2007).
    54. W.J. Kim, J.B. Lee, W.Y. Kim, H.T. Jeong and H.G. Jeong, Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling, Scripta Materialia, Vol.56, pp.309-312 (2007).
    55. H. Watanabe, T. Mukai and K. Ishikawa, Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy, Journal of Materials Processing Technology, Vol.182, pp.644-647 (2007).
    56. H.H. Choi, J.H. Lee, S.K. Bijun and B.S. Kang, Development of a three-dimensional finite-element program for metal forming and its application to precision coining, Journal of Materials Processing Technology, Vol.72, pp. 396-402 (1997).
    57. F.K. Chen and T.B. Huang, Formability of stamping magnesium-alloy AZ31 sheets, Journal of Materials Processing Technology, Vol.142 pp. 643-647 (2003).
    58. N. Ogawa, M. Shiomi and K. Osakada, Forming limit of magnesium alloy at elevated temperatures for precision forging, International Journal of Machine Tools & Manufacture, Vol.42, pp.607-614 (2002)
    59. B.A. Behrens and I. Schmidt, Improving the properties of forged magnesium parts by optimized process parameters, Journal of Materials Processing Technology, Vol.187-188, pp.761-765 (2007).
    60. P. Skubisz, J. Sinczak and B. Bednarek, Forgeability of Mg–Al–Zn magnesium alloys in hot and warm closed die forging, Journal of Materials Processing Technology, Vol.177, pp.210-213 (2006).
    61. H.L. Ho, S.H. Hsiang and Z.Y. Huang, Investigation of the formability of flanged parts of magnesium alloy under hot forging process, The 11th International Conference on Advances in Materials and Processing Technologies, AMPT-BF0198015 (2008).
    62. A. Mwembela, E.B. Konopleva and H.J. McQueen, Microstructural development in Mg alloy AZ31during working, Scripta Materialia, Vol.37, No 11, pp.1789-1795 (1998).
    63. 林昇立,塑性加工學,第四版,高立圖書有限公司,台北縣 (2004)。
    64. 林益煒,AZ31鎂合金板材之熱間擠製加工製程及其機械性質之研究,國立台灣科技大學碩士論文 (2005)。
    65. 余煥騰、陳適範,金屬塑性加工學,修訂二版,全華科技圖書股份有限公司,台北市 (2003)。
    66. 范光堯,機械成形技術於鎂合金材料的應用概況,工業材料雜誌,第162期 (2000)。
    67. 馬寧元,鎂合金表面處理簡介,鍛造月刊,第九卷第一期, 37-49頁 (2000)。
    68. 劉文勝,AZ61鎂合金的疲勞性質與破壞分析,國立中央大學碩士論文 (2000)。
    69. 魏汝超,鎂合金之熱機處理與退火處理的顯微組織研究,國立台灣大學碩士論文 (2003)。

    70. Nonferrous metal products: magnesium and magnesium alloys, Annual Book of ASTM Standards, Vol.02.02, B275-02, pp. 298-304 (2003).
    71. 張季娜,羅仕勇,宋振昌,蔡彰文,陳世璉,莊泰旭,邱鎮宏,高述崙譯,田口式品質工程導論,中華民國品質管制學會,台北市 (1993)。
    72. 李輝煌,田口方法:品質設計的原理與實務,高立圖書有限公司,台北縣 (2000)。
    73. G. Taguchi, Introduction to quality engineering: designing quality into products and processes, Asian Productivity Organization, Tokyo (1986).
    74. 蘇木春、張孝德,機器學習:類神經網路、模糊系統以及基因演算法則,修訂二版,全華科技圖書股份有限公司,台北市 (2006)。
    75. 李允中、王小璠、蘇木春,模糊理論及其應用,全華科技圖書股份有限公司,台北市 (2004)。
    76. 何惠琳,徑向凸緣成形模具設計及相關參數影響之研究,國立台灣科技大學博士論文 (2003)。
    77. 王進德、蕭大全,類神經網路與模糊控制理論入門,修訂版,全華科技圖書股份有限公司,台北市 (2003)。
    78. 郭哲良,鎂合金熱間擠製加工之製程開發及半溶融加工之研究,國立台灣科技大學博士論文 (2005)。
    79. Z.C. Lin, and D.Y. Chang, Application of a neural network machine learning model in the selection system of sheet metal bending tooling, International Journal of Artificial Intelligence in Engineering, Vol.10, pp.21-37 (1996).
    80. 金屬材料拉伸試驗試片,中國國家標準,CNS:2112 (1983)。
    81. 周鵬程,遺傳演算法原理與應用-活用Matlab,修訂二版,全華科技圖書股份有限公司,台北市 (2005)。
    82. 龔淑銘,應用模糊田口方法與類神經網路於銑削加工製程之最佳參數設計,國立高雄第一科技大學碩士論文 (2004)。

    無法下載圖示 全文公開日期 2014/06/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE