簡易檢索 / 詳目顯示

研究生: 吳宥賢
YOU-XIAN WU
論文名稱: 高性價比及低分離力之手機光固化3D列印樹脂槽製程開發
Developed of Smart Phone 3D Printer Resin Tank with Low Separation Force and High Price-Performance Ratio
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 蘇威年
Wei-Nien Su
郭庭魁
Ting-Kuie Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 57
中文關鍵詞: 樹脂槽FEP表面改質手機光固化3D列印
外文關鍵詞: resin tank, FEP Surface modification, smartphone 3Dprinter
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在3D列印下照式光固化系統中,低分離力為一項重要之技術關鍵,影響層面包含列印速度與列印物件之成功與否,為使分離力降至最低,以單一鐵氟龍薄膜作為槽底材料,為最便宜之低分離力機構設計。
    本論文研究將著重於將單一鐵氟龍薄膜直接黏附於樹脂槽主體,分析各項製程之優劣以解決鐵氟龍之黏附問題,並配製UV黏膠且進行測試,最後設計黏附封膜之方法與槽體測試,以驗證整體製程之可行性。
    研究成果顯示大氣電漿對鐵氟龍(FEP)進行表面改質,最高性價比;由於保存與處理繁雜,故其次為化學液萘鈉處理法。另一方面研究指出配製之UV黏膠TPU溶於THFA當中添加活性劑EOEOEA-30%在照光40秒下強度最佳。


    In the DLP(Digital Light Processing)system, the low separation force is an important key technology under 3D printing. Influences include the speed of printing and the success of the printed object. In order to minimize the separation force, we use one single Teflon film (FEP film) as the bottom material, it is the cheapest low separation force mechanism design.
    This dissertation will focus on the single Teflon film (FEP film) directly attached to the main body of the resin tank , analysis the merits of the process to solve the adhesion of Teflon , and deploy UV viscose for testing. Finally, design the method of adhesive film and the tank test to verify the feasibility of the overall process.
    The results show that the atmospheric plasma modifies the surface of Teflon (FEP), the high price-performance ratio ; Because the complexity of preservation and processing, the second process will be chemical liquid naphthalene sodium. On the other hand, studies have shown that it had the best strength to formulate UV viscosed TPU and dissolved in THFA, added active agent EOEOEA-30% in the light under 40 seconds of illumination.

    摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 VII 表目錄 IX 第一章、緒論 1 1.1前言 1 1.2 研究背景與目的 2 1.3 論文架構 3 第二章、文獻探討 4 2.1光固化成型方式 4 2.1.1 SLA 4 2.1.2 DLP 5 2.2光固化樹脂反應機制 6 2.3 樹脂槽與低分離技術發展 13 2.3.1 降低分離力之機構與技術 13 2.3.2 市售低價可拋棄式樹脂槽比較 19 第三章、T3D(台科三維)手機3D列印系統 21 3.1 機台架構 21 3.2 機台作動方式 22 3.3 軟體操作 23 3.4 樹脂槽體設計 24 第四章、實驗架構與方法 26 4.1 鐵氟龍薄膜與表面改質方法 27 4.1.1噴砂法 27 4.1.2電漿法 28 4.1.3化學法 29 4.2 UV黏膠配製 30 4.3 傅立葉轉換紅外線光譜儀(FTIR) 31 4.4槽底封膜之方法 31 4.5承重與列印測試 33 4.5.1列印測試 34 4.5.2承重測試 35 第五章、實驗結果與討論 36 5.1 鐵氟龍表面改質與性價比之分析 36 5.2 UV黏膠測試 37 5.3 樹脂槽製作之結果測試 39 第六章、結論 42 參考文獻 43

    [1] ASTM ISO/ASTM52900-15 Standard Terminology for Additive Manufacturing – General Principles – Terminology, ASTM International, West Conshohocken, PA, 2015,
    [2] P. J. Bártolo, Ed., Stereolithography. Boston, MA: Springer US, 2011.
    [3] T. T. Wohlers, Ed., Wohlers report 2016: 3D printing and additive manufacturing state of the industry annual worldwide progress report. Fort Collins, Colorado: Wohlers Associates, 2016.I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies. New York, NY: Springer New York, 2015.
    [4] 許峻豪,”低功率可見光固化製程之分析與研究”,國立台灣科技大學機械工程系碩士學位論文中華民國一百零五年七月。
    [5] 張富騰,”隨身攜帶式裝置光照之積層製造系統”,國立台灣科技大學機械工程系碩士學位論文中華民國一百零三年七月。
    [6] 陳茂揚,”光固化快速成型系統製作3D組織工程支架”,國立台灣科技大學機械工程系碩士學位論文中華民國九十七年六月。
    [7] Wyn Kelly Swainson " Method, Medium and Apparatus for Producing Three-Dimensional Figure Product " U. S. Patent
    [8] Industry, 3D Printing “The Free Beginner’s Guide - Processes. 3D Printing Industry.”
    https://3dprintingindustry.com/3d-printing-basics-free-beginners-guide/processes/, accessed June 11, 2017.
    [9] 陳茂揚,”光固化快速成型系統製作3D組織工程支架”,國立台灣科技大學機械工程系碩士學位論文中華民國九十七年六月。
    [10] 何怡青, 白勝方, 楊淑芬, 李士元, “樹脂類材料的聚合及其評估” , 牙醫學雜誌, 第20-28頁, 2010。
    [11] Formlabs, Support Home. “Replacing the Resin Tank”
    http://support.formlabs.com/hc/en-us/articles/115000007510-Replacing-the-Resin-Tank, accessed June 11, 2017.
    [12] Y. Chen and C. Zhou, “Digital mask-image-projection-based additive manufacturing that applies shearing force to detach each added layer,” Nov. 2013.
    [13] 蕭高智 ”光固化立體造型裝置” 中華民國 專利。
    [14] Y.-M. Huang and C.-P. Jiang, “On-line force monitoring of platform ascending rapid prototyping system,” J. Mater. Process. Technol., vol. 159, no. 2, pp. 257–264, Jan. 2005.
    [15] Asiga, PRO-Products “Slide and Separate™ Technology”
    https://www.asiga.com/products/printers/pro/, accessed June 11, 2017.
    [16] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, and J. M. DeSimone, “Continuous liquid interface production of 3D objects,” Science, vol. 347, no. 6228, pp. 1349–1352, 2015.
    [17] J. M. Desimone, A. ERMOSHKIN, N. ERMOSHKIN, and E. T. Samulski, “Continuous liquid interphase printing,” Aug. 2014.
    [18] J. M. Desimone, A. ERMOSHKIN, N. ERMOSHKIN, and E. T. Samulski, “Method and apparatus for three-dimensional fabrication with feed through carrier,” Nov. 2014.
    [19] Carbon3D, “Continuous Liquid Interface Production.”
    http://www.carbon3d.com/clip-process, accessed June 11, 2017.
    [20] Newpro3D, Super Fast 3D Printer, “World’s Fastest 3D Printer of the Day | ILITM Technology”
    http://newpro3d.com/ili-technology/, accessed June 11, 2017.
    [21] Nexa 3D, “LSPc Technology”
    https://www.nexa3d.com/lspc-technology/, accessed June 11, 2017.
    [22] CARIMA, “CARIMA-Continuous Additive 3D Printing Technology,”
    http://www.carima.com/ko/node/138, accessed Oct 01, 2015
    [23] T3D, Mobile 3D Printer,” The World's First Mobile Multi-Functional 3D Printer”
    http://myt3d.com/, accessed June 12, 2017.
    [24] 李松泰,化工技術,第九卷,第五期,1985,第53-58頁。
    [25] SAKIGAKE,“Principle of Surface Treatment and Cleaning”
    https://sakigakes.co.jp/eng/principle-plasma_eng.html, accessed June 12, 2017.
    [26] 中国氟塑料网,” PTFE表面改性方法:钠-萘络合物化学改性_中国氟塑料网”
    http://www.myptfe.com/Teflon/Technical/200912/1009.html, accessed June 12, 2017.
    [27] 徐逸明, 游閔盛, 郭有斌, 黃傑, 洪昭南, “常壓電將原理、技術與應用”, 化工技術, 第68-85頁, 2009。

    無法下載圖示 全文公開日期 2022/08/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE