簡易檢索 / 詳目顯示

研究生: 陳凱翔
Kai-Xiang Chen
論文名稱: 使用可量產塗佈技術製作高速光固化3D列印系統樹脂槽底膜之研發
Research and Development of Resin Tank Bottom Film for High Speed Vat Photopolymerization 3D Printing System Using Mass Production Coating Technology
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 謝志華
葉雲鵬
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 161
中文關鍵詞: 積層製造光固化3D列印連續列印塗佈技術高速列印
外文關鍵詞: Coating Technology
相關次數: 點閱:405下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下照式光固化3D列印系統從原先以雷射做為光源到使用Digital Light Processing(DLP)以及Liquid Crystal Display(LCD)做為光罩進行面的曝光成型,使光固化3D列印系統向高速列印發展,主要是因為這兩種列印系統將能量與形貌分開處理,以LCD光固化3D列印為例,能量是由LED做為來源,而形貌則是由LCD面板定義。但下照式光固化3D列印仍然有待解決的問題,主要是每層固化後必須將成型平台抬升一定高度使固化層與樹脂槽底膜分離。為解決此問題,Carbon 3D使用氧抑制效果以及台科大使用矽膠搭配抑制劑來達到抗沾黏(死區)的概念,將原先耗時的Z軸抬升及下降時間省去,使列印時Z軸只需抬升一層層厚達到連續列印,使列印時間更加縮短。
    本研究目的是採用可量產塗佈技術製做高速光固化3D列印樹脂槽底膜,此膜使用矽膠做為主要材料,搭配抑制劑製成矽膠抑制膜,研究最後發現製作的100μm矽膠抑制膜其厚度均勻度為2%左右,與市售鐵氟龍(Teflon)膜的3%相近,而薄膜製做時間相較先前縮短至25-30分鐘,並且將薄膜使用壽命、列印精度等進行完整的測試。


    From using laser as the light source to using digital light processing (DLP) and liquid crystal display (LCD) as the light mask in additive manufacturing, the bottom-up vat photopolymerization 3D printing system has developed towards to high speed 3D printing. The main reason is that these two printing systems (DLP & LCD) separate 3D printing into two parts, which are the source of the energy provider and the definition of the shape. Taking the LCD 3D printing system for example, the energy source is provided by the LED, and the definition of the shape is provided by the LCD panel. However, there are still some problems to be solved in bottom-up vat photopolymerization 3D printing system, mainly because after each layer is cured, the building platform must be lifted to a certain of height to separate the cured layer from the resin tank bottom film. In order to solve this problem, Carbon 3D uses oxygen as inhibitor and NTUST uses polydimethylsiloxane (PDMS) with designed inhibitor to achieve the concept of anti stick effect(dead zone), which saves the original time-consuming of z-axis lifting and reposition time, so that the z-axis only needs to be lifted a layer height to achieve continuous printing, which shortens more printing time.
    The purpose of this study is to develop resin tank bottom film for high speed vat photopolymerization 3D printing system by using mass production coating technology. This film uses PDMS as the main material with inhibitors as additive. Finally, it is found that 100 μm, 150 μm and 200 μm PDMS inhibition films are relatively stable when coating. Furthermore, comparing with their printing separation forces, it is found that the film thickness has little effect on the separation forces, so 100μm PDMS is used for further study. The coating thickness uniformity of 100μm PDMS inhibition film is about 2%, which is close to the commercially available Teflon film of 3%. The film making time is shortened to 25-30 minutes compared with the previous procedure, and the film life time and printing accuracy are tested.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 研究方法與步驟 4 1.4 論文架構 5 第二章 文獻回顧 6 2.1 積層製造 6 2.2 光聚合固化 (Vat Photopolymerization) 9 2.2.1 上照式及下照式光固化技術 10 2.2.2 固化成型方式 13 2.3 光聚合固化原理 24 2.3.1 自由基聚合反應[17] 24 2.3.2 樹脂相容性 28 2.4 分離力 30 2.4.1 物理方式降低分離力技術 31 2.4.2 化學方式降低分離力技術 36 2.4.3 分離力監控 43 2.5 連續列印 44 2.5.1 非接觸式連續列印 47 2.5.2 接觸式連續列印 48 2.5.3 影響連續列印參數 51 2.5.4 連續列印限制 52 2.6 高速3D列印 55 2.7 精密塗佈技術 59 2.7.1 塗佈技術種類 59 2.8 使用設備 64 2.8.1 下照式光固化3D列印機 64 2.8.2 塗佈設備 69 2.8.3 實驗儀器 74 2.9 樹脂槽介紹 83 2.9.1 矽膠抑制膜 83 2.9.2 矽膠抑制膜製備方法 86 2.9.3 樹脂槽形式 90 第三章 實驗規劃與測試方法 97 3.1 矽膠塗佈測試 97 3.1.1 塗佈穩定度測試 99 3.1.2 塗佈均勻度測試 99 3.2 分離力測試 100 3.3 列印精度測試 104 3.4 矽膠膜壽命測試 108 3.4.1 百格測試 109 3.4.2 列印壽命測試 110 3.4.3 材料相容性測試 111 3.5 透光度測試 111 第四章 實驗結果與討論 112 4.1 矽膠塗佈測試 112 4.1.1 塗佈均勻度測試結果 114 4.2 膜厚對列印分離力影響 118 4.3 列印精度比較 119 4.4 矽膠抑制膜壽命測試結果 123 4.4.1 百格測試結果 125 4.4.2 列印壽命測試結果 127 4.4.3 相容性測試結果 128 4.5 透光度測試結果 130 4.6 矽膠抑制膜應用測試結果 132 第五章 結論與未來展望 135 5.1 結論 135 5.2 未來方向 137 參考文獻 138

    [1] Wikipedia contributors, STL (file format), (https://en.wikipedia.org/w/index.php?title=STL_(file_format)&oldid=902588517).
    [2] Additive Manufacturing Technology Standards, (https://www.astm.org/Standards/additive-manufacturing-technology-standards.html).
    [3] The 7 Categories of Additive Manufacturing, (https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/).
    [4] C.W. Hull, Apparatus for production of three-dimensional objects by stereolithography, 3D Systems Inc, 1984, (US4575330A).
    [5] K. Salonitis, 10.03 - Stereolithography, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.) Comprehensive Materials Processing, Elsevier, Oxford, 2014, pp. 19-67.
    [6] HP PageWide Technology, (https://www8.hp.com/tw/zh/printers/pagewide-business-printers.html?m802=1&tab=1).
    [7] 葉怡昌, 使用線掃瞄可見光之新式快速光罩樹脂硬化系統研發, 機械工程系, 國立臺灣科技大學, 台北市, 1999, pp. 141.
    [8] 黃育嘉, 動態光罩式三維微影系統之研發, 機械工程系, 國立臺灣科技大學, 台北市, 2004, pp. 82.
    [9] 數位光處理, (https://zh.wikipedia.org/wiki/%E6%95%B0%E5%AD%97%E5%85%89%E5%A4%84%E7%90%86).
    [10] T. Instruments, DLP® technology, (http://e2e.ti.com/blogs_/b/enlightened/archive/2016/10/06/the-pioneering-work-that-led-to-the-dmd).
    [11] 鄭正元、汪家昌、沈昌和, 動態光罩模組, 國立台灣科技大學, 2004.
    [12] A. Bertsch, S. Zissi, J.Y. Jézéquel, S. Corbel, J.C. André, Microstereophotolithography using a liquid crystal display as dynamic mask-generator, Microsystem Technologies, 3 (1997) 42-47.
    [13] 許興仁, 光罩式樹脂成型快速原型機之研發, 機械工程系, 國立臺灣科技大學, 台北市, 2000, pp. 132.
    [14] 張國龍, 認識LCD液晶顯示器, 2003, (https://www.taifer.com.tw/PublicationArticleDetailC004000.aspx?Cond=a3ba66e4-ba30-47ab-83d3-cdbadf6f3cc1).
    [15] 張富騰, 智慧型手機式3D列印系統開發之研究, 機械工程系, 國立臺灣科技大學, 2014, pp. 93.
    [16] 巫昆達, 高速UV LCD光固化3D列印系統開發之研究, 機械工程系, 國立臺灣科技大學, 2018, pp. 105.
    [17] 何怡青、白聖方、楊淑芬、李士元, 樹脂類材料的聚合及其評估, (2010).
    [18] B.J. van Meer, H. de Vries, K.S.A. Firth, J. van Weerd, L.G.J. Tertoolen, H.B.J. Karperien, P. Jonkheijm, C. Denning, A.P. Ijzerman, C.L. Mummery, Small molecule absorption by PDMS in the context of drug response bioassays, Biochemical and Biophysical Research Communications, 482 (2017) 323-328.
    [19] M.G. R.J. Viereckl, Volker Petry, Rich Dodd, Xavier Marguerettaz, Sean Des Roches, Formulating for 3D printing: Constraints and Components for Stereolithography, 2018, (https://uvebtech.com/articles/2018/formulating-for-3d-printing-constraints-and-components-for-stereolithography/).
    [20] Resin printing guide, (https://www.dragonresin.com/pages/technical-support).
    [21] H. Ye, A. Venketeswaran, S. Das, C. Zhou, Investigation of separation force for constrained-surface stereolithography process from mechanics perspective, Rapid Prototyping Journal, 23 (2017) 696-710.
    [22] 聚四氟乙烯, (https://zh.wikipedia.org/wiki/%E8%81%9A%E5%9B%9B%E6%B0%9F%E4%B9%99%E7%83%AF).
    [23] 聚二甲基矽氧烷, (https://zh.wikipedia.org/wiki/%E8%81%9A%E4%BA%8C%E7%94%B2%E5%9F%BA%E7%9F%BD%E6%B0%A7%E7%83%B7).
    [24] Y.-M. Huang, C.-P. Jiang, On-line force monitoring of platform ascending rapid prototyping system, Journal of Materials Processing Technology, 159 (2005) 257-264.
    [25] Y. Pan, Y. Chen, C. Zhou, Fast Recoating Methods for the Projection-based Stereolithography Process in Micro-and Macro-Scales, 2012.
    [26] J. Jin, J. Yang, H. Mao, Y. Chen, A vibration-assisted method to reduce separation force for stereolithography, Journal of Manufacturing Processes, 34 (2018) 793-801.
    [27] X. Wu, Q. Lian, D. Li, Z. Jin, Tilting separation analysis of bottom-up mask projection stereolithography based on cohesive zone model, Journal of Materials Processing Technology, 243 (2017) 184-196.
    [28] J.R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A.R. Johnson, D.G. Kelly, K. Chen, R.K. Pinschmidt, J.P. Rolland, A. Ermoshkin, E.T. Samulski, J.M.J.S. DeSimone, Continuous liquid interface production of 3D objects, 347 (2015) 1349-1352.
    [29] EnvisionTEC, (https://envisiontec.com/3d-printing-white-papers-best-practices/).
    [30] 連帝皓, 透析式高速光固化3D列印成型技術之研究, 機械工程系, 國立臺灣科技大學, 2017, pp. 104.
    [31] 陳貞佑, 下照式DLP高速3D列印失敗因子之探討, 機械工程系, 國立臺灣科技大學, 2018, pp. 99.
    [32] 張浩威, 大面積高速光固化3D列印成型技術之分離力研究, 機械工程系, 國立臺灣科技大學, 2018, pp. 73.
    [33] 黃冠騰, 快速光固化懸浮式3D列印成型技術之研究, 機械工程系, 國立臺灣科技大學, 2016, pp. 103.
    [34] Nexa3D, (https://nexa3d.com/process/).
    [35] H. You-Min, J. Jeng-Ywan, J. Cho-Pei, W. Jia-Chang, Computer supported force analysis and layer imagine for masked rapid prototyping system, Proceedings of the Sixth International Conference on Computer Supported Cooperative Work in Design (IEEE Cat. No.01EX472), 2001, pp. 562-567.
    [36] 莊書豪, 高解析度LCD桌上型積層製造之智慧拉力監控系統研究, 自動化及控制研究所, 國立臺灣科技大學, 2018, pp. 86.
    [37] 李惟聖, DLP式液態快速原型系統之模糊控制研究, 自動化及控制研究所, 國立臺灣科技大學, 2004, pp. 116.
    [38] A.S.E.-S. John, Continuous generative process for producing a three-dimensional object, Envisiontec GmbH, 2006.
    [39] Carbon3D, (https://www.carbon3d.com/our-technology/).
    [40] A. Nazir, J.-Y. Jeng, A high-speed additive manufacturing approach for achieving high printing speed and accuracy, 0 0954406219861664.
    [41] Multi Jet Fusion, (https://www8.hp.com/tw/zh/printers/3d-printers.html).
    [42] Production System™-Single Pass Jetting, (https://www.desktopmetal.com/products/production).
    [43] HIGH SPEED SINTERING (HSS), (https://www.voxeljet.com/company/news/voxeljet-introduces-high-speed-sintering-process/).
    [44] 溫恕恒, 精密塗佈技術與應用, 2011, (https://www.materialsnet.com.tw/DocView.aspx?id=9711).
    [45] 周更生, 二十一世紀的新化學工程, 五南圖書出版公司, 台北市, 民國九十五年.
    [46] 精密塗佈技術介紹, (https://kknews.cc/zh-tw/news/e9z2mlq.html).
    [47] 张承焱, 硅橡胶薄膜及其制造方法, 2004.
    [48] Y.O. EUROPE, (https://www.yo-europe.de/products/uv-engines/nvm-plus-uv-dlp-light-engine-system/).
    [49] A. FreeShape120, (https://ackuretta.com/freeshape/).
    [50] How to Measure Wet Film Thickness using Elcometer Wet Film Combs, (https://www.elcometer.com/en).
    [51] Standard Test Methods for Rating Adhesion by Tape Test, (https://compass.astm.org/EDIT/html_annot.cgi?D3359+17).

    無法下載圖示 全文公開日期 2025/02/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE