簡易檢索 / 詳目顯示

研究生: 李紅玉
Hongyu Li
論文名稱: 視覺能供性設計於智能家居裝置之互動體驗研究
The Effects of Visual Affordance Design on the Interaction Experience of Smart Home Devices
指導教授: 陳建雄
Chien-Hsiung Chen
口試委員: 吳志富
Chih-Fu Wu
宋同正
Tung-Jung Sung
許言
Hsu Yen
柯志祥
Chih-Hsiang Ko
陳建雄
Chien-Hsiung Chen
學位類別: 博士
Doctor
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 127
中文關鍵詞: 能供性視覺線索使用者介面互動體驗感應智能家居裝置
外文關鍵詞: Affordance, Visual clue, User interface, Interactive Experience, Sensor, Smart home device
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

智能科技促使能供性 (Affordance) 設計研究從真實物體向虛擬空間應用轉化,能供性 (Affordance) 是介面設計核心組成部分,也是促進人機互動良性循環的基本構成要素。它可以為使用者提供視覺線索,引導人機直觀交互以及幫助使用者感知資訊,提高操作效率等。觸控螢幕 (Touch Screen) 作為集直接操作和視覺顯示於一體化的媒介,強化人機互動的行為可能性;它具備節省空間、簡單易操作以及多元特徵顯示。當介面設計運用合理時 (如動態圖標),可以增強資訊敘事功能的學習性和愉悅性,提升使用者感知高時間能供性及互動體驗。反之,當設計內容不合理時,感知能供性將會被反噬,造成使用者困擾,進而影響智能家居裝置的使用性。故本研究以觸感智能家居裝置為載體,透過能供性 (Affordance) 理論對人與物 (虛擬介面) 之間行為能供性感知,探討人與虛擬介面環境之間的關係,以幫助使用者降低資訊感知不確定性和系統的複雜性。
本研究從兩項子議題展開且均採以實驗法,探討使用者在智能家居裝置上的行為實施過程。運用相關視覺線索,如不同時間能供性感知程度、不同操作模式及動靜狀態對資訊感知、認可度及主觀偏好等使用者體驗方面的影響,以增強視覺感知能供性的設計意圖。同時,基於現實介面操作載體的需要,透過能供性設計應用的有效數據和先前理論背景及心理學研究作為支撐,來擴展能供性設計研究的深度和廣度以及信效度。研究子議題一,主要以觸感智能微波爐為依託,針對不同層級的時間能供性與不同的操作模式之間的相互作用;研究子議題二,主要以觸感智能洗衣機為依託,針對不同層級的視覺狀態能供性與不同的操作模式之間的相互作用。子議題二為議題一的延展,其能供性設計也呈現不同,旨在探討更多視覺線索與操作模式對使用者感知的影響。
子議題一與二的實驗設計均採用2x3混合雙因子實驗 (Mixed Factorial Experiment),實驗一:自變數一為時間能供性 (Time Affordance: 高和低) ,自變數二為介面操作模式 (「傳統型」,「觸控型」和「智能型」);實驗二:自變數一為狀態能供性 (States Affordance: 動態和靜態),自變數二為不同層級的操作模式 (「圓型」、「網狀型」及「方型」)。它們的依變數為能供性 (Affordance) 設計的任務績效、行為表徵、視覺感知、注意力、使用性和主觀偏好等。採用便利抽樣的方式,均招募了24位大專院校的學生參與實驗。實驗資料來源於任務績效、系統易用性量表 (SUS) 、主觀滿意度之李克特七階量表 (Likert Scale) 問卷,及半結構式訪談,以提供研究結果資料來源。經由SPSS軟體之ANOVA數據分析得出,實驗一:(1) 時間能供性的主效應有顯著差異,多重時間線索有助於降低感知不確定性,為參與者提供較高的時間能供性;(2) 不同操作模式的主效應具有顯著性差異,參與者對「智能型」最為滿意;(3) 任務績效和滿意度總體分析結果顯示,時間能供性與操作模式均具備一致性,高時間能供性優於低時間能供性,其操作模式之「智能型」任務績效最佳,參與者操作任務所花時長最短;(4) 介面設計應遵循參與者經驗和觸感智能裝置的性能特徵,採用部分智能和自定義功能設置相結合的方式,可以有效提高參與者對智能家居裝置的自主可控性。實驗二:(1) 狀態能供性的主效應有顯著差異,動態圖標對智能洗衣機介面能供性有顯著影響,它能增強圖標的能供性感知,有助於提高操作效率;(2) 三款不同操作模式亦有顯著差異,「方型」融合了現代智能化和經驗習得性,有助於提高參與者任務績效;(3) 任務績效和主觀評量總體分析一致表明,「方型」普遍優於「圓型」和「網狀型」,動態能供性的任務績效表現最佳;(4) 介面設計應從多維視角關注使用者心理,以增強感知能供性並提升使用者體驗。
本研究採用標準的量化實驗方法,收集有效資料並輔以質化研究的分析與討論,得出具有實際效益的設計研究結論。其結果可為智能家居裝置之視覺感知的能供性設計及使用者體驗等方面,並為相關部門或機構及設計工作者提供可操作性的建議。此外,該研究目前僅關注介面的視覺能供性設計、使用者感知及觸感體驗等,未來將會圍繞體感和聲控及虛擬實境等新興技術能供性研究,以建構出更自然且智能的介面能供性系統,提升使用者與科技之間的互動共生。


Smart technology promotes the transformation of affordance design research from real object applications to virtual space applications. Affordance is a core component of user interface design and a basic element of promoting a virtuous cycle of human-computer interaction. It can provide users with visual cues, guide intuitive human-computer interaction, help users perceive information, and improve operational efficiency. As an integrated medium that integrates direct operation and visual display, the touch screen enhances the behavioral possibility of human-computer interaction; it has the characteristics of saving space, easy operation, and multiple displays. When the user interface design is used reasonably (i.e., animated icons), it can enhance the learning and pleasure of the information narrative function, and improve the user's perception of higher time affordance and interactive experience. Conversely, when the design content is unreasonable, the perception of affordance will be backlashed, causing confusion for users and affecting the usability of smart home devices. Therefore, this study takes the tactile smart home device as the carrier, uses the affordance theory to perceive the behavior affordance between people and things (virtual interface), and explores the relationship between people and the virtual interface environment. The goal is to help users reduce information perception uncertainty and system complexity.
This study starts from two sub-topics and adopts an experimental method to explore the implementation process of users' behaviors on smart home devices, using relevant visual cues. For example, the degree of affordance perception at different times, different operating modes, and the impact of animated and static states on user experience such as information perception, recognition, and subjective preference, in order to enhance the design intention of visual perception affordance. At the same time, this study is conducted based on the needs of real-world interface operation carriers, supported by effective data of affordance design applications and previous theoretical background and psychological research, to expand the depth, breadth, reliability and validity of affordance design research. The first research topic is mainly based on the tactile smart microwave oven, aiming at the interaction between different levels of time affordance and different operating modes. The second research topic is mainly based on the tactile smart washing machine, aiming at the interaction between different levels of visual state affordance and different operating modes. Topic 2 is an extension of Topic 1, and its affordance design is also different, aiming to explore the impact of more visual cues and operating modes on user perception.
The experimental designs of both topics 1 and 2 adopt a 2x3 mixed factorial experiment. Experiment 1: Independent variable 1 is time affordance (i.e., high and low), and independent variable 2 is interface operation mode (i.e., traditional, touch, and smart). Experiment 2: Independent variable 1 is states affordance (i.e., animated and static), and independent variable 2 is interface operation mode (i.e., circle, mesh and square). The dependent variables are task performance, behavioral representation, visual perception, attention, usability, and subjective preference designed by affordance. Using the convenience sampling method, 24 adults were recruited to participate in the experiment. The experimental data were collected pertinent to task performance, the system usability scale, and through subjective satisfaction questionnaires created using a 7-point Likert scale, and semi-structured interviews. The generated results revealed that: Experiment 1, (1) There was a significant difference in the time affordance. Multiple time information cues can help reduce uncertainty, providing high time affordance to the participants. (2) There were significant differences among different operation modes. A simple and intuitive of the Smart type is in line with user expectations. (3) The overall analysis of task performance and satisfaction consistently showed that high time affordance is better than low time affordance in all aspects, and the Smart type had the best task performance. (4) The user interface design should be followed by users’ experience and the features of the touch product. Partially smart and custom function adjustments may effectively improve the user’s control of smart products. Experiment 2, (1) There was a significant difference in the affordance states. Animated icons significantly affect the heuristic processing of the smart washing machine interface, and enhance the usefulness of icons, which helps improve operational efficiency. (2) There were significant differences among different operation modes. The Square type interface combines the modern smart mode and traditional learning performance to help users improve task performance. (3) The overall analysis of task performance and satisfaction consistently showed that the Square type is better than the Circle and Mesh types in all aspects, and the animated affordance had the best task performance. (4) Interface design should focus on user psychology from a multi-dimensional perspective to enhance perceptual affordance and improve user experience.
This study employs standard quantitative experiments, effective data collection methods, and complements them with qualitative research analysis and discussion to derive design research results that have practical benefits. The research results can be used for the affordance design and user experience of the visual perception of smart home devices, and provide operable references for relevant departments or institutions and design workers. In addition, this study currently focuses on the visual affordance design of the interface, user perception, and tactile experience. The smart interface affordance system enhances the interactive symbiosis between users and technology.

目 錄 中文摘要 ii ABSTRACT iv 誌 謝 vii 目 錄 ix 圖索引 xii 表索引 xiii 第一章 緒 論 1 1.1 研究背景與動機 1 1.1.1 智能家居的概念源起及其定位 1 1.1.2 智能家居裝置之家電發展現況 3 1.1.3 觸感智能家居裝置之互動體驗 4 1.1.4 小結 6 1.2 研究目的 7 1.3 研究範圍與限制 9 1.4 研究流程 10 第二章 文獻探討 13 2.1「能供性Affordance」概述 13 2.1.1「能供性Affordance」概念的發展與定位 14 2.1.2「能供性Affordance」概念的意義與作用 18 2.1.3 人機互動之能供性感知 20 2.1.4 小結 21 2.2 介面視覺線索之能供性設計 24 2.2.1「時間能供性Time Affordance」 24 2.2.2「狀態能供性States Affordance」 26 2.2.3 能供性之視覺風格影響 29 2.2.4 能供性之技術應用方式 32 2.2.5 小結 33 2.3 直觀互動 (Intuitive interaction) 34 2.3.1 智能觸感 34 2.3.2 互動模式 34 2.3.3 小結 36 2.4 互動設計之心理學理論 36 2.4.1 生態心理學之直覺知覺論 36 2.4.3 認知心理學之視覺注意力 38 2.4.4 小結 40 2.5 情境體驗 40 2.5.1 情境感知 40 2.5.2 情緒價值 42 2.5.4 小結 43 2.6 總結 43 第三章 研究議題一:時間能供性於智能微波爐使用者介面設計之影響研究 44 3.1 研究目標與問題 44 3.2 研究方法與設備 44 3.3 參與者基本情況 45 3.4 實驗設計與過程 46 3.5 結果與分析 49 3.5.1 任務績效分析 49 3.5.2 系統易用性量表 (SUS) 54 3.5.3 主觀滿意度 55 3.6 綜合討論 58 3.6.1 單一時間與多重時間線索影響參與者時間感知 59 3.6.2 三種操作模式影響時間感知 60 3.6.3 參與者主觀評量 60 3.7 總結 61 第四章 研究議題二:狀態能供性於智能洗衣機使用者介面設計之影響研究 63 4.1 研究目標與問題 63 4.2 研究方法與設備 63 4.3 參與者基本情況 64 4.5 實驗設計與過程 64 4.6 結果與分析 67 4.6.1 任務績效與分析 67 4.6.2 系統易用性量表 (SUS) 74 4.6.3 主觀滿意度 75 4.7 綜合討論 79 4.7.1 動態視覺線索顯著影響參與者能供性感知 80 4.7.2 三種操作模式影響參與者視覺感知 81 4.7.3 參與者主觀評量 81 4.8 總結 82 第五章 結論與建議 84 5.1 研究成果與建議 84 5.2 未來計畫 88 英文參考文獻 91 中文參考文獻 104 附錄A 105 附錄B 109

英文參考文獻
1. Apple Reinvents the Phone with iPhone (2007) Retrieved from
https://www.apple.com/newsroom/2007/01/Apple-Reinvents-the-Phone-with-iPhone/. Press Release by Apple Inc.
2. Anderson, N. H. (1981). Foundations of information integration theory.
3. Arend, U., Muthig, K.-P., & Wandmacher, J. (1987). Evidence for global feature
superiority in menu selection by icons. Behaviour & Information Technology,
6(4), 411–426. https://doi.org/10.1080/01449298708901853
4. Baber, C. (2018). Designing Smart Objects to Support Affording Situations:
Exploiting Affordance Through an Understanding of Forms of Engagement.
Frontiers in Psychology, 9.
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00292
5. Baecker, R. M. (2014). Readings in Human-Computer Interaction: Toward the Year 2000. Elsevier.
6. Barati, B., & Karana, E. (2019). Affordances as Materials Potential: 13(3).
7. Bederson, B. B., & Boltman, A. (1999, October). Does animation help users build
mental maps of spatial information?. In Proceedings 1999 IEEE Symposium on
Information Visualization (InfoVis' 99) (pp. 28-35). IEEE.
8. Benyon, D. (2005). Designing interactive systems: People, activities, contexts,
technologies. https://cir.nii.ac.jp/crid/1130000797662775040
9. Berry, D. C., & Broadbent, D. E. (1988). Interactive tasks and the implicit-explicit
distinction. British Journal of Psychology, 79(2), 251–272.
https://doi.org/10.1111/j.2044-8295.1988.tb02286.x
10. Blankenberger, S., & Hahn, K. (1991). Effects of icon design on human-computer
interaction. International Journal of Man-Machine Studies, 35(3), 363–377.
https://doi.org/10.1016/S0020-7373(05)80133-6
11. Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annu. Rev.
Psychol., 58, 47-73.
12. Boling, E., Alangari, H., Hajdu, I. M., Guo, M., Gyabak, K., Khlaif, Z., Kizilboga,
R., Tomita, K., Alsaif, M., Lachheb, A., Bae, H., Ergulec, F., Zhu, M., Basdogan, M., Buggs, C., Sari, A., & Techawitthayachinda, R. “Inging”. (2017). Core Judgments of Instructional Designers in Practice. Performance Improvement Quarterly, 30(3), 199–219. https://doi.org/10.1002/piq.21250
13. Boucheix, J.-M., & Forestier, C. (2017). Reducing the transience effect of animations does not (always) lead to better performance in children learning a complex hand procedure. Computers in Human Behavior, 69, 358–370. https://doi.org/10.1016/j.chb.2016.12.029
14. Bub, D. N., Masson, M. E. J., & Kumar, R. (2018). Time course of motor affordances evoked by pictured objects and words. Journal of Experimental Psychology: Human Perception and Performance, 44(1), 53–68.
https://doi.org/10.1037/xhp0000431
15. Buxton, B. (2010). Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann.
16. Carpenter, M. L. (1993). Using Animation in the Validation of Simulation Models.
17. Carroll, J. M. (2003). Making Use: Scenario-Based Design of Human-Computer
Interactions. MIT Press.
18. Chang, B.-W., & Ungar, D. (1993). Animation: From cartoons to the user interface.
Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, 45–55. https://doi.org/10.1145/168642.168647
19. Chanwimalueng, W., & Rapeepisarn, K. (2013). A study of the recognitions and preferences on abstract and concrete icon styles on smart phone from Easterners and Westerners’ point of view. 2013 International Conference on Machine Learning and Cybernetics, 04, 1613–1619.
https://doi.org/10.1109/ICMLC.2013.6890858
20. Charness, N., Reingold, E. M., Pomplun, M., & Stampe, D. M. (2001). The perceptual aspect of skilled performance in chess: Evidence from eye movements. Memory & Cognition, 29(8), 1146–1152. https://doi.org/10.3758/BF03206384
21. Chebat, J.-C., Gelinas-Chebat, C., & Filiatrault, P. (1993). Interactive Effects of Musical and Visual Cues on Time Perception: An Application to Waiting Lines in Banks. Perceptual and Motor Skills, 77(3), 995–1020.
https://doi.org/10.2466/pms.1993.77.3.995
22. Chen, A. N. K., Lee, Y., & Hwang, Y. (2018). Managing online wait: Designing
effective waiting screens across cultures. Information & Management, 55(5), 558–575. https://doi.org/10.1016/j.im.2017.12.001
21. Chen, L.-H., & Liu, Y.-C. (2017). Affordance and Intuitive Interface Design for Elder Users with Dementia. Procedia CIRP, 60, 470–475.
https://doi.org/10.1016/j.procir.2017.02.015
22. Chong, I., & Proctor, R. W. (2020). On the Evolution of a Radical Concept:
Affordances According to Gibson and Their Subsequent Use and Development. Perspectives on Psychological Science, 15(1), 117–132.
https://doi.org/10.1177/1745691619868207
23. Chung, M. K., Kim, D., Na, S., & Lee, D. (2010). Usability evaluation of numeric entry tasks on keypad type and age. International Journal of Industrial Ergonomics, 40(1), 97–105. https://doi.org/10.1016/j.ergon.2009.08.001
24. Conn, A. P. (1995). Time affordances: The time factor in diagnostic usability
heuristics. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’95, 186–193.
https://doi.org/10.1145/223904.223928
26. Cho, Y., & Choi, A. (2020). Application of Affordance Factors for User-Centered
Smart Homes: A Case Study Approach. Sustainability, 12(7), 3053.
26. Creem‐Regehr, S. H., & Kunz, B. R. (2010). Perception and action. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 800-810.
27. Cormier, P., Olewnik, A., & Lewis, K. (2014). Toward a formalization of affordance modeling for engineering design. Research in Engineering Design, 25(3), 259–277. https://doi.org/10.1007/s00163-014-0179-3
28. Cutting, J. E. (1982). Two Ecological Perspectives: Gibson vs. Shaw and Turvey.
The American Journal of Psychology, 95(2), 199–222.
https://doi.org/10.2307/1422466
29. Ellis, R., & Tucker, M. (2000). Micro-affordance: The potentiation of components
of action by seen objects. British Journal of Psychology, 91(4), 451–471.
https://doi.org/10.1348/000712600161934
30. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of experimental psychology: human perception and performance, 27(1), 229.
31. Evans, S. K., Pearce, K. E., Vitak, J., & Treem, J. W. (2017). Explicating
Affordances: A Conceptual Framework for Understanding Affordances in Communication Research. Journal of Computer-Mediated Communication, 22(1), 35–52.
32. Faraday, P., & Sutcliffe, A. (1997). Designing effective multimedia presentations. Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems, 272–278. https://doi.org/10.1145/258549.258753
33. Ford, R., Pritoni, M., Sanguinetti, A., & Karlin, B. (2017). Categories and functionality of smart home technology for energy management. Building and Environment, 123, 543–554. https://doi.org/10.1016/j.buildenv.2017.07.020
34. Gaver, W. W. (1991). Technology affordances. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems Reaching through Technology-CHI ’91, 79–84. https://doi.org/10.1145/108844.108856
35. Gaver, W. W. (1992). The affordances of media spaces for collaboration. Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work-
CSCW ’92, 17–24. https://doi.org/10.1145/143457.371596
36. Geist, R., Allen, R., & Nowaczyk, R. (1986). Towards a model of user perception of computer systems response time. Proceedings of the SIGCHI/GI Conference on Human Factors in Computing Systems and Graphics Interface, 249–253. https://doi.org/10.1145/29933.275638
37. Gibson, J. J. (1978). The Ecological Approach to the Visual Perception of Pictures. Leonardo, 11(3), 227–235.
38. Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton Mifflin.
39. Goldkuhl, G. (2008). Actability Theory Meets Affordance Theory: Clarifying HCI in IT Usage Situations.
40. Good, N., Martínez Ceseña, E. A., & Mancarella, P. (2017). Ten questions concerning smart districts. Building and Environment, 118, 362–376.
https://doi.org/10.1016/j.buildenv.2017.03.037
41. Grechkin, T. Y., Plumert, J. M., & Kearney, J. K. (2014). Dynamic affordances in
embodied interactive systems: The role of display and mode of locomotion. IEEE transactions on visualization and computer graphics, 20(4), 596-605.
42. Haber, R. N. (1978). Visual Perception. Annual Review of Psychology, 29(1), 31–
59. https://doi.org/10.1146/annurev.ps.29.020178.000335
43. Hassenzahl, M., & Tractinsky, N. (2006). User experience-a research agenda.
Behaviour & information technology, 25(2), 91-97.
44. Hartson, R. (2003). Cognitive, physical, sensory, and functional affordances in
interaction design. Behaviour & Information Technology, 22(5), 315–338.
https://doi.org/10.1080/01449290310001592587
45. Harrison, C., Amento, B., Kuznetsov, S., & Bell, R. (2007, October). Rethinking
the progress bar. In Proceedings of the 20th annual ACM symposium on User interface software and technology (pp. 115-118).
46. Hillstrom, A. P., & Yantis, S. (1994). Visual motion and attentional capture.
Perception & Psychophysics, 55(4), 399–411.
https://doi.org/10.3758/BF03205298
47. Hochberg, J. (1994). Perceptual Theory and Visual Cognition. Cognitive
Approaches to Human Perception. Psychology Press.
48. Hsu, C.-C., Fann, S.-C., & Chuang, M.-C. (2017). Relationship between eye
fixation patterns and Kansei evaluation of 3D chair forms. Displays, 50, 21–34.
https://doi.org/10.1016/j.displa.2017.09.002
49. Huang, H., & Lai, H.-H. (2008). Factors influencing the usability of icons in the
LCD touchscreen. Displays, 29(4), 339–344.
https://doi.org/10.1016/j.displa.2007.10.003
50. Huang, H., Yang, M., & Lv, T. (2018). Ergonomic analysis of washing machines
for elderly people: A focus group-based study. International Journal of Industrial Ergonomics, 68, 211–221. https://doi.org/10.1016/j.ergon.2018.08.008
51. Huang, S., & Bias, R. (2023). Without Context, Icons are Significantly Worse than
Texts to Convey Meanings in Terms of Accuracy and Efficiency.
52. Huhtala, J., Sarjanoja, A.-H., Mäntyjärvi, J., Isomursu, M., & Häkkilä, J. (2010).
53. Animated UI transitions and perception of time: A user study on animated effects
on a mobile screen. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 1339–1342. https://doi.org/10.1145/1753326.1753527
54. Hye, K. J., Gon, K. J., & Hak, L. K. (2016). A study on utilization plan for
affordance theory-based virtual reality contents. Indian J. Sci. Technol., 9(24), 1-12.
55. Irwin, C. B., Yen, T. Y., Meyer, R. H., Vanderheiden, G. C., Kelso, D. P., & Sesto,
M. E. (2011). Use of force plate instrumentation to assess kinetic variables during touch screen use. Universal Access in the Information Society, 10(4), 453–460. https://doi.org/10.1007/s10209-011-0218-z
56. Isherwood, S. (2009). Graphics and Semantics: The Relationship between What Is
Seen and What Is Meant in Icon Design. Engineering Psychology and Cognitive
Ergonomics (pp. 197–205). Springer.
https://doi.org/10.1007/978-3-642-02728-4_21
57. Ji Hye, K., Jin Gon, K., & Kyoung Hak, L. (2016). A Study on Utilization Plan for Affordance Theory-based Virtual Reality Contents. Indian Journal of Science and Technology, 9(24). https://doi.org/10.17485/ijst/2016/v9i24/96156
58. Johnson, E. A. (1965). Touch display? a novel input/output device for computers.
Electronics Letters, 8 (1), 219–220. https://doi.org/10.1049/el:19650200
59. Kang, H., & Shin, G. (2014). Hand usage pattern and upper body discomfort of
desktop touchscreen users. Ergonomics, 57(9), 1397–1404.
https://doi.org/10.1080/00140139.2014.924574
60. Kaptelinin, V., & Nardi, B. (2012). Affordances in HCI: Toward a mediated action perspective. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 967–976. https://doi.org/10.1145/2207676.2208541
61. Kim, J. H., & Lee, K. P. (2005). Cultural difference and mobile phone interface design: Icon recognition according to level of abstraction. Proceedings of the 7th international conference on Human computer interaction with mobile devices & services, 307–310. https://doi.org/10.1145/1085777.1085841
62. Klügl, F. (2015). Affordance-Based Interaction Design for Agent-Based Simulation Models. Multi-Agent Systems (pp. 51–66). Springer International Publishing. https://doi.org/10.1007/978-3-319-17130-2_4
63. Koskela, T., & Väänänen-Vainio-Mattila, K. (2004). Evolution towards smart home environments: Empirical evaluation of three user interfaces. Personal and Ubiquitous Computing, 8(3), 234–240.
64. Kraft, J. F., & Hurtienne, J. (2017). Transition animations support orientation in mobile interfaces without increased user effort. Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, 1–6. https://doi.org/10.1145/3098279.3098566
65. Kukka, H., Oja, H., Kostakos, V., Gonçalves, J., & Ojala, T. (2013). What makes you click: Exploring visual signals to entice interaction on public displays. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1699–1708. https://doi.org/10.1145/2470654.2466225
66. Kuo, J.-Y., Chen, C.-H., Koyama, S., & Chang, D. (2021). Investigating the
relationship between users’ eye movements and perceived product attributes in design concept evaluation. Applied Ergonomics, 94, 103393.
https://doi.org/10.1016/j.apergo.2021.103393
67. Lasseter, J. (1998). Principles of traditional animation applied to 3D computer
animation. Seminal graphics (pp 263–272). ACM.
https://doi.org/10.1145/280811.281005
68. Leahy, M., & Hix, D. (1990). Effect of Touch Screen Target Location on User
Accuracy. Proceedings of the Human Factors Society Annual Meeting, 34(4),
370–374. https://doi.org/10.1177/154193129003400429
69. Lee, C. S. (2010). Managing perceived communication failures with affordances
of ICTs. Computers in Human Behavior, 26(4), 572–580.
https://doi.org/10.1016/j.chb.2009.12.009
70. Leonardi, P. M. (2011). When Flexible Routines Meet Flexible Technologies:
Affordance, Constraint, and the Imbrication of Human and Material Agencies. MIS Quarterly, 35(1), 147–167. https://doi.org/10.2307/23043493
71. Levin, J. R., & Mayer, R. E. (2012). Understanding illustrations in text. In Learning from textbooks (pp. 95-113). Routledge.
72. Lee, Y. E., & Benbasat, I. (2003). Interface design for mobile commerce.
Communications of the ACM, 46(12), 48-52.
73. Liang, Y., Wang, W., Qu, J., & Yang, J. (2018). Comparison Study of Visual Search on 6 Different Types of Icons. Journal of Physics: Conference Series, 1060(1), 012031. https://doi.org/10.1088/1742-6596/1060/1/012031
74. Li, H., & Chen, C.-H. (2020). Progress Bar Effects as a Time Clue for the Touch-Sensitive User Interface of a Smart Microwave Oven. Advances in Usability, User Experience, Wearable and Assistive Technology (pp. 77–82). Springer International Publishing. https://doi.org/10.1007/978-3-030-51828-8_11
75. Li, H., & Chen, C.H. (2021). Effect of the Affordances of the FM New Media
Communication Interface Design for Smartphones. Sensors, 21.2: 384.
https://doi.org/10.3390/s21020384
76. Li, H., & Chen, C. H. (2021). “Research on the classic block interface design of
mobile games,” in Proc. IEEE Int. Conf. Consum. Electron. Comput.
Eng. (ICCECE), Guangzhou, China, Jan. 2021, pp. 626–629.
77. Li, H., &Chen, C. H. (2020). “Progress bar effects as a time clue for the touch-
sensitive user interface of a smart microwave oven,” in Proc. Int.
Conf. Appl. Hum. Factors Ergonom., Adv. Intell. Syst. Comput., San
Diego, CA, USA, vol.1217. Cham, Switzerland: Springer, pp. 77–82.
78. Lowe, R., & Boucheix, J.-M. (2011). Cueing complex animations: Does direction
of attention foster learning processes? Learning and Instruction, 21(5), 650–663. https://doi.org/10.1016/j.learninstruc.2011.02.002
79. Löwgren, J., & Stolterman, E. (2004). Thoughtful Interaction Design: A Design
Perspective on Information Technology. MIT Press.
80. Lucaites, K., Fletcher, B., & Pyle, A. (2017). Measuring the Impact of Affordance-
Based Clickability Cues.
81. Macar, F., Grondin, S., & Casini, L. (1994). Controlled attention sharing
influences time estimation. Memory & cognition, 22(6), 673-686.
82. Maier, J. R., Sandel, J., & Fadel, G. M. (2009). Experiments Comparing Function
Structures to Affordance Structures. In DS 58-5: Proceedings of
ICED 09, the 17th International Conference on Engineering Design, Vol. 5,
Design Methods and Tools (pt. 1), Palo Alto, CA, USA, 24.-27.08. 2009.
83. Mcdougall, S. J. P., Curry, M. B., & de Bruijn, O. (1999). Measuring symbol and
icon characteristics: Norms for concreteness, complexity, meaningfulness, familiarity, and semantic distance for 239 symbols. Behavior Research Methods, Instruments, & Computers, 31(3), 487–519. https://doi.org/10.3758/BF03200730
84. McDougall, S. J. P., de Bruijn, O., & Curry, M. B. (2000). Exploring the effects of icon characteristics on user performance: The role of icon concreteness, complexity, and distinctiveness. Journal of Experimental Psychology: Applied, 6(4), 291–306. https://doi.org/10.1037/1076-898X.6.4.291
85. McGrenere, J., & Ho, W. (2000). Affordances: Clarifying and Evolving a Concept.
86. Mestres-Missé, A., Münte, T. F., & Rodriguez-Fornells, A. (2014). Mapping
concrete and abstract meanings to new words using verbal contexts. Second Language Research, 30(2), 191–223. https://doi.org/10.1177/0267658313512668
87. Megaw, E. D., & Richardson, J. (1979). Eye movements and industrial inspection.
Applied Ergonomics, 10(3), 145-154.
88. Myers, B. A. (1985). The importance of percent-done progress indicators for
computer-human interfaces. ACM SIGCHI Bulletin, 16(4), 11–17.
https://doi.org/10.1145/1165385.317459
89. Neisser, U. (1969). The role of rhythm in active verbal memory: Serial intrusions.
The American Journal of Psychology, 82(4), 540-546.
90. Norman, D. A. (1986). Cognitive engineering. User centered system design,
31(61), 2.
91. Norman, D. A. (1988). The psychology of everyday things (頁 xi, 257). Basic
Books.
92. Norman, D. A. (1999). Affordance, conventions, and design. Interactions, 6(3),
38–43. https://doi.org/10.1145/301153.301168
93. Norman, D. A. (2005). Human-centered design considered harmful. interactions,
12(4), 14-19.
94. Norman, D. A. (2009). The Design of Future Things. Basic Books.
95. Orphanides, A. K., & Nam, C. S. (2017). Touchscreen interfaces in context: A
systematic review of research into touchscreens across settings, populations,
and implementations. Applied Ergonomics, 61, 116–143.
https://doi.org/10.1016/j.apergo.2017.01.013
96. Oshlyansky, L., Thimbleby, H., & Cairns, P. (2004). Breaking affordance: Culture
as context. Proceedings of the third Nordic conference on Human-computer interaction, 81–84. https://doi.org/10.1145/1028014.1028025
97. Osuna, E. E. (1985). The psychological cost of waiting. Journal of Mathematical
Psychology, 29(1), 82–105. https://doi.org/10.1016/0022-2496(85)90020-3
98. Ozcelik, E., Arslan-Ari, I., & Cagiltay, K. (2010). Why does signaling enhance
multimedia learning? Evidence from eye movements. Computers in human behavior, 26(1), 110-117.
99. Parasuraman, R. (1986). Vigilance, monitoring, and search.
100. Peterson, H., & Dugas, D. (1972). The Relative Importance of Contrast and
Motion in Visual Perception. Human Factors, 14, 207-216.
101. Pibernik, J., Dolić, J., Vistid, A., & Mandić, L. (2019). Time Affordance Components impact on User’s Experience. 2019 International Symposium ELMAR, 151–153. https://doi.org/10.1109/ELMAR.2019.8918661
102. Polanyi, M. (1966). The Tacit Dimension Routledge & Kegan Paul.
103. Posner, M., & Snyder, Y. (1975). Attention and cognitive control. Information
processing and cognition. Hillsdale, NJ: Erlbaum.
104. Qu, Q.-X., & Guo, F. (2019). Can eye movements be effectively measured to assess product design?: Gender differences should be considered. International
Journal of Industrial Ergonomics, 72, 281–289.
https://doi.org/10.1016/j.ergon.2019.06.006
105. Reed, E. S. (1996). Encountering the World: Toward an Ecological Psychology.
Oxford University Press.
106. Rietveld, E., & Kiverstein, J. (2014). A Rich Landscape of Affordances. Ecological Psychology, 26(4), 325–352. https://doi.org/10.1080/10407413.2014.958035
107. Roy, S., Singh, P. P., & Padun, A. (2021). Game-based learning for the awareness of Culture & Tradition: an exploratory case study on the indigenous Naga tribe. In Design for Tomorrow—Volume 2: Proceedings of ICoRD 2021 (pp. 293-304). Springer Singapore.
108. Satcharoen, K. (2017). An Investigation of Computer Icon Design. In Proceedings of the 21st Conference of Open Innovations FRUCT, Helsinki, Finland (pp. 6-10).
109. Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing: I. Detection, search, and attention. Psychological Review, 84(1), 1–66. https://doi.org/10.1037/0033-295X.84.1.1
110. Schröder, S., & Ziefle, M. (2008). Effects of Icon Concreteness and Complexity on Semantic Transparency: Younger vs. Older Users. Computers Helping People with Special Needs (pp. 90–97). Springer. https://doi.org/10.1007/978-3-540-70540-6_12
111. Schulz, L., Ischebeck, A., Wriessnegger, S. C., Steyrl, D., & Müller-Putz, G. R. (2018). Action affordances and visuo-spatial complexity in motor imagery: An fMRI study. Brain and Cognition, 124, 37–46.
https://doi.org/10.1016/j.bandc.2018.03.012
112. Schwalm, N. D., & Shaviv, V. (2000, July). Can Icon Animation Enhance Human Performance… Or is it Just Another Gimmick?. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 44, No. 2, pp. 323-326). Sage CA: Los Angeles, CA: SAGE Publications.
113. Scott, B., & Conzola, V. (1997). Designing Touch Screen Numeric Keypads: Effects of Finger Size, Key Size, and Key Spacing. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 41(1), 360–364.
https://doi.org/10.1177/107118139704100180
114. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.
https://doi.org/10.1037/0033-295X.84.2.127
115. Shin, D., & Biocca, F. (2018). Exploring immersive experience in journalism. New Media & Society, 20(8), 2800–2823.
https://doi.org/10.1177/1461444817733133
116. Shin, D.-H. (2017). The role of affordance in the experience of virtual reality learning: Technological and affective affordances in virtual reality. Telematics and Informatics, 34(8), 1826–1836. https://doi.org/10.1016/j.tele.2017.05.013
117. Shin, G., & Zhu, X. (2011). User discomfort, work posture and muscle activity while using a touchscreen in a desktop PC setting. Ergonomics, 54(8), 733–744. https://doi.org/10.1080/00140139.2011.592604
118. Shin, D. (2019). How do technological properties influence user affordance of wearable technologies? Interaction Studies, 20(2), 307-338.
119. Shin, D. (2022). Does augmented reality augment user affordance? The effect of technological characteristics on game behaviour. Behaviour & Information Technology, 41(11), 2373-2389.
120. Shin, D., & Park, Y. J. (2019). Role of fairness, accountability, and transparency in algorithmic affordance. Computers in Human Behavior, 98, 277-284.
121. Shneiderman, B. (1984). Response time and display rate in human performance with computers. ACM Computing Surveys, 16(3), 265–285.
https://doi.org/10.1145/2514.2517
122. Siek, K. A., Rogers, Y., & Connelly, K. H. (2005). Fat Finger Worries: How Older and Younger Users Physically Interact with PDAs. Human-Computer Interaction—INTERACT 2005 (pp 267–280). Springer.
https://doi.org/10.1007/11555261_24
123. Solso, R. L. (1994). Cognition and the visual arts. MIT press.
124. Still, J. D., & Dark, V. J. (2013). Cognitively describing and designing affordances. Design Studies, 34(3), 285–301.
https://doi.org/10.1016/j.destud.2012.11.005
125. Sternberg, R. J. (2006). Cognitive Psychology. Belmont, CA: Thomson Higher
Education.
126. Subramanya, S. R., & Yi, B. K. (2006). Digital rights management. IEEE
potentials, 25(2), 31-34.
127. Thompson, S. V., & Riding, R. J. (1990). The Effect of Animated Diagrams on
the Understanding of a Mathematical Demonstration in 11- to 14-Year-Old Pupils. British Journal of Educational Psychology, 60(1), 93–98.
https://doi.org/10.1111/j.2044-8279.1990.tb00925.x
128. Thaler, R. H., and Sunstein, C. R. (2008). Nudge: Improving Decisions about Health, Wealth and Happiness. London: Penguin Books.
129. Tractinsky, N., Katz, A. S., & Ikar, D. (2000). What is beautiful is usable. Interacting with Computers, 13(2), 127–145.
https://doi.org/10.1016/S0953-5438(00)00031-X
130. Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it
facilitate? International Journal of Human-Computer Studies, 57(4), 247–262.
https://doi.org/10.1006/ijhc.2002.1017
131. Tversky, B. (2001). Spatial schemas in depictions. In Spatial schemas and
abstract thought (Vol. 79, p. 111).
132. Vicente, K. J., & Rasmussen, J. (1992). Ecological interface design: Theoretical
foundations. IEEE Transactions on Systems, Man, and Cybernetics, 22(4),
589–606. https://doi.org/10.1109/21.156574
133. Vogel, D., & Balakrishnan, R. (2004). Interactive public ambient displays:
Transitioning from implicit to explicit, public to personal, interaction with multiple users. Proceedings of the 17th annual ACM symposium on User interface software and technology, 137–146.
134. Wallace, S., & Yu, H.-C. (2009). The Effect of Culture on Usability: Comparing the Perceptions and Performance of Taiwanese and North American MP3 Player Users. 4(3).
135. Wang, Q., Zhang, Y., Chen, G., Chen, Z., & Hee, H. I. (2021). Assessment of Heart Rate and Respiratory Rate for Perioperative Infants Based on ELC Model. IEEE Sensors Journal, 21(12), 13685–13694.
https://doi.org/10.1109/JSEN.2021.3071882
136. Wang, Q., Liu, W., Chen, X., Wang, X., Chen, G., & Zhu, X. (2021).
Quantification of scar collagen texture and prediction of scar development via
second harmonic generation images and a generative adversarial network.
Biomedical Optics Express, 12(8), 5305-5319.
137. Weiser, M. (1999). The computer for the 21 st century. ACM SIGMOBILE Mobile
Computing and Communications Review, 3(3), 3–11.
https://doi.org/10.1145/329124.329126
138. Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II. Ín
Psychologische Forschung, 4, 301–350. Translation published in Ellis, Willis, D.
(1938). A source book of Gestalt psychology (pp. 71–88).
139. Wickens, C. D., & Hollands, J. G. (2000). Signal detection, information theory, and absolute judgment. Engineering psychology and human performance,
2, 24-73.
140. Wigdor, D., & Wixon, D. (2011). Brave NUI world: designing natural user
interfaces for touch and gesture. Elsevier.
141. Wolff, J. S., & Wogalter, M. S. (1998). Comprehension of pictorial symbols:
Effects of context and test method. Human factors, 40(2), 173-186.
142. Wu, D. (2016). Research on the micro-interactive interface design of intelligent
washing machines in IOT environment. 2016 22nd International Conference on Automation and Computing (ICAC), 479–487.
143. Xi, T., & Wu, X. (2018). The Influence of Different Style of Icons on Users’ Visual Search in Touch Screen Interface. Advances in Ergonomics in Design (pp. 222–232). Springer International Publishing. https://doi.org/10.1007/978-3-319-60582-1_22
144. You, H., & Chen, K. (2007). Applications of affordance and semantics in product design. Design Studies, 28(1), 23–38.
145. Young, J. G., Trudeau, M., Odell, D., Marinelli, K., & Dennerlein, J. T. (2012). Touch-screen tablet user configurations and case-supported tilt affect head and neck flexion angles. Work, 41(1), 81–91. https://doi.org/10.3233/WOR-2012-1337
146. Zakay, D. (1989). Subjective time and attentional resource allocation: An integrated model of time estimation. Advances in Psychology (vol. 59, pp. 365–397). North-Holland. https://doi.org/10.1016/S0166-4115(08)61047-X
147. Zhang, X., Wang, Q., & Shi, Y. (2017). Contrastive Analysis on Emotional Cognition of Skeuomorphic and Flat Icon. Advanced Graphic Communications and Media Technologies (pp225–232). Springer. https://doi.org/10.1007/978-981-10-3530-2_28
148. Zhen, Z.Z. (1993). Cognitive psychology: theory and practice. Laureate, Taipei.
149. Zikmund-Fisher, B. J., Witteman, H. O., Fuhrel-Forbis, A., Exe, N. L., Kahn, V.
C., & Dickson, M. (2012). Animated Graphics for Comparing Two Risks: A
Cautionary Tale. Journal of Medical Internet Research, 14(4), e2030.
150. Zuboff, S. (1988). In the age of the smart machine: The future of work and power. Basic Books, Inc.
中文參考文獻
1. 遊曉貞、 陳國祥 & 邱上嘉 (2006)。直接知覺論在產品設計應用之審視。設 計學報 (Journal of Design), 11(3)。
2. Solso, RL (1998),認知心理學 (吳玲玲譯)。臺北市:華泰書局,(原文於1994年出版)。
3. 鄭麗玉(1993)。認知心理學: 理論與應用。五南圖書出版股份有限公司。
4. Preece, J., Rogers, Y., & Sharp H. (2006). 互動設計跨越人-電腦互動(陳建雄譯)。臺北: 全華科技圖書股份有限公司。
5. Bangor, A., Kortum, P., & Miller, J. (2009). Designing interactive systems: people, activities, contexts, technologies (人機介面:互動式系統設計),郭學武譯。 臺北市:碁峰資訊。
6. 36氪研究院 | 2022年小家電市場趨勢洞察報告-36氪 (36kr.com)。
7. 綠色智能家電正走俏 - 市場環境 - 中國產業經濟資訊網 (cinic.org.cn)。
8. Plateau, J. (1835). 視覺暫留 - 維琪百科,自由的百科全書 (wikipedia.org)
9. 衛浴網-衛浴潔具行業門戶領跑者 (chinaweiyu.com)

無法下載圖示 全文公開日期 2025/08/15 (校內網路)
全文公開日期 2025/08/15 (校外網路)
全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE