簡易檢索 / 詳目顯示

研究生: 卜文正
Wen-Cheng Pu
論文名稱: 定子磁通導向感應機再生模式穩定化之適應控制與估測
Adaptive Control and Estimation for the Regeneration Mode Stabilization of Stator Flux Oriented Induction Motor Drives
指導教授: 劉昌煥
Chang-Huan Liu
口試委員: 劉添華
Tian-Hua Liu
施慶隆
Ching-Long Shih
陳秋麟
none
呂福生
none
謝冠群
Guan-Chyun Hsieh
羅有綱
Yu-Kang Lo
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 156
中文關鍵詞: 定子磁通導向無量測器再生模式MRAS
外文關鍵詞: stator-flux-oriented, sensorless, regeneration mode, MRAS
相關次數: 點閱:200下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討無量測器定子磁通導向控制感應電動機驅動器在低轉速再生模式操作中穩定度之分析與控制問題。論文首先建立各種感應電動機之數學模型與無量測器感應電動機磁通導向控制架構。本論文接著提出以參考模式適應系統(model reference adaptive system,MRAS)為基礎之無量測器控制策略,其中包括全階閉迴路磁通估測器與適應性速度估測器。針對此適應性估測法則在低轉速再生模式控制時之不穩定現象,本論文進一步分析現象發生之原因並提出解決方法。在定子磁通架構下,本論文藉由選擇適當的觀測器增益來消除再生模式不穩定操作範圍並建立一套有系統設計觀測器增益與轉速估測器之比例增益參數、積分增益參數的方法。為解決定子電阻溫升問題,本論文進一步提出即時估測定子電阻之運算法則,以消除因定子電阻變動造成估測不準確。最後經由模擬與實驗印證本論文所提出之控制策略,可達到低轉速再生模式下之穩定運轉且能即時估測定子電阻。


    This dissertation investigate the stability analysis and control problems of a speed-sensorless stator-flux-oriented induction motor drive at low-speed regeneration mode. The mathematical models and the sensorless field-orientation control structures are presented first. A model reference adaptive system(MRAS) based control method is proposed, which include a full-order close-loop flux observer and an adaptive speed estimator. With regard to the instability phenomenon occurs at low-speed regeneration mode, the dissertation investigates further the instability causes and proposes remedial methods. Under stator-flux orientation, the dissertation chooses appropriate observer gain to eliminate the unstable operation region at the regeneration mode and establishes a systematic way of designing the proportional and integral controller gains for the flux observer and speed estimator. To resolve the variation of stator resistance due to temperature, an on-line stator resistance estimation algorithm is further proposed, which reduces the estimation inaccuracy due to stator resistance variation. Finally, the proposed control strategies for stable low-speed regeneration mode operation and on-line stator resistance estimation are validated by both computer simulation and experiments.

    中文摘要Ⅰ 英文摘要Ⅱ 誌 謝Ⅲ 目 錄Ⅳ 符號索引Ⅷ 圖索引Ⅹ 第一章 緒論 1.1研究動機 1.2研究目的 1.3內容大綱 第二章 感應電動機磁通導向無量測器向量控制理論 2.1感應電動機三相數學模型 2.2兩軸數學模型 2.2.1 以定子電流與轉子電流為狀態變數之數學模型 2.2.2 以定子電流與轉子磁通為狀態變數之數學模型 2.2.3 以定子電流與定子磁通為狀態變數之數學模型 2.2.4 以定子磁通與轉子磁通為狀態變數之數學模型 第三章 磁通估測與速度估測 3.1簡介 3.2轉子磁場導向控制 3.2.1開迴路估測控制 3.2.2閉迴路估測控制 3.3 定子磁通導向控制 3.4 高頻注入 第四章 參考模式適應系統無量測器控制 4.1 參考模式適應系統控制 4.2 轉子磁通導向MRAS控制 4.2.1以定子電流與轉子磁通為狀態變數之全階觀測器系統 4.2.2 以定子電流與激磁電流為狀態變數之全階觀測器系統 4.2.3 以定子磁通與轉子磁通為狀態變數之全階觀測器系統 4.3 定子磁通導向MRAS控制 4.3.1 無量測器定子磁通導向控制系統 4.3.2 無量測器定子磁通導向MRAS控制 第五章 穩定度分析與控制器設計 5.1轉子磁通導向MRAS控制 5.1.1 以激磁電流與定子電流為狀態變數架構之系統 5.1.2 以轉子磁通與定子磁通為狀態變數架構之系統 5.2 定子磁通導向MRAS 第六章 電阻估測器設計 6.1電阻變動靈敏度探討 6.2定子電阻估測 6.3具即時定子電阻估測之感應電動機 無量測器定子磁通導向控制系統 第七章 模擬與實驗 7.1 模擬與實驗平台介紹 7.2 無感測器向量控制性能評估模擬與實驗 7.2.1馬達模式運轉之模擬與實驗 7.2.2 再生模式穩定化模擬與實驗 7.3 定子電阻估測模擬與實驗 第八章 結論與建議 8.1 結論 8.2 建議與後續研究方向 附 錄 參考文獻 作者簡介

    參考文獻
    [1]Blaschke, F., “The Principle of Field Orientation Applies to the New Transvector Close-loop Control System for Rotating Field Machines,” Siemens Review, Vol. 39, No. 5, pp. 217-220 (1972).
    [2]Vasic, V., Vukosavic, S.N., and Levi, E., “A stator resistance estimation scheme for speed sensorless rotor flux oriented induction motor drives,” IEEE Trans. Energy Conversion, Vol. 18, No. 4, pp. 476-483 (2003).
    [3]Toliyat, H. A., Levi, E., and Raina, M., “ A Review of RFO Induction Motor Parameter Estimation Techniques, ” IEEE Trans. Energy Conversion, Vol. 18, No. 2, pp. 271-283 (2003).
    [4]Shin, Myoung-Ho, and Hyun, Dong-Seok, “Speed Sensorless Stator Flux-Oriented Control of Induction Machine in the Field Weakening Region,” IEEE Tran. power electron., Vol. 18, No. 2, pp. 580-586 (2003).
    [5]Wee, Sung-Don, Myoung-Ho Shine, and Dong-Seok Hyun, “Stator-Flux-Oriented Control of Induction Motor Considering Iron Loss, ” IEEE Trans. ind. Appl., Vol. 48, No. 3, pp. 602-608 (2001).
    [6]Holtz, J., “Guest Editorial,” IEEE Trans. Ind. Electron, Vol. 53, No. 1, pp. 5-7 (2006).
    [7]Holtz, J., “Sensorless Control of Induction Machines –with or withoutSignal Injection?,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 7-30 (2006).
    [8]Holtz, J., “Developments in Sensorless AC Drive Technology” , in Proc. IEEE Int. Conf. Power Electronics and Drives Systems, Vol. 1, pp. 9-16 (2005).
    [9]Holtz, J., ”Sensorless Control of Induction Motor Drives, ” Proceedings of the IEEE, Vol. 90, No. 8, pp.1359-1394 (2002).
    [10]Ohyama, K., Asher, G. M., and Sumner, M., “Comparative Analysis of Experimental Performance and Stability of Sensorless Induction Motor Drives,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 178-186 (2006).
    [11]Kubota, H., Sato, I., Tamura, Y., Matsuse, K., Ohta, H., and Hori, Y., “Regenerating-Mode Low-Speed Operation of Sensorless Induction Motor Drive with Adaptive Observer,” IEEE Trans. Ind. Appl., Vol. 38, No. 4, pp. 1081-1086 (2002).
    [12]Robyns, B., Berthereau, F., Cossart, G., Chevalier, L., Labrique, F., and Buyse, H., “A Methodology to Determine Gains of Induction Motor Flux Observers Based on a Theoretical Parameter Sensitivity Analysis,” IEEE Trans. Power Electronics, Vol. 15, No. 6, pp. 983-995 (2000).
    [13]Depenbrock, M., and Steimel, A., “Discussion of Regenerating- Mode Low-Speed Operation of Sensorless Induction Motor Drive with Adaptive Observer,” IEEE Transactions on Industry Applications, Vol. 39, No. 1, pp. 19 (2003).
    [14]Hoffmann, F., and Koch, S., “Steady State Analysis of Speed Sensorless Control of Induction Machines,” Proceedings International Conference on Industrial Electronics society, Aachen, Germany, Vol. 3, pp. 1626-1631 (1998).
    [15]Hofmann, H., and Sanders, S. R., “Speed-Sensorless Vector Torque Control of Induction Machines Using a Two-Time-Scale Approach,” IEEE Trans. Ind. Appl., Vol. 34, No. 1, pp. 169-177 (1998).
    [16]Kim, J., Nam, K., Chung, J., and Sunwoo, H., “Sensorless Vector Control Scheme for Induction Motors Based on a Stator Flux Estimator with Quadrant Error Compensation Rule,” IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 492-503 (2003).
    [17]Holtz, J., and Quan, J., “Sensorless Vector Control of Induction Motors at Very Low Speed Using a Nonlinear Inverter Model and Parameter Identification,” IEEE Trans. Ind. Appl., Vol. 38, No. 4, pp. 1087-1095 (2002).
    [18]Guidi, G., and Umida, H., “A Sensorless Induction Motor Drive for Low Speed Applications Using a Novel Stator Resistance Estimation Method,” Conference Records IEEE-IAS Annual Meeting, Phoenix, AZ, USA, pp. 180-186 (1999).
    [19]Habetler, T. G., Profumo, F., Griva, G., Pastorelli, M., and Bettini, A., “Stator Resistance Tuning in a Stator-Flux Field-Oriented Drive Using an Instantaneous Hybrid Flux Estimator,” IEEE Transactions on Industry Applications, Vol. 13, No. 1, pp. 125 –133 (1998).
    [20]Tajima, H., Guidi, G., and Umida, H., “Consideration about Problems and Solutions of Speed Estimation Method and Parameter Tuning for Speed-Sensorless Vector Control of Induction Motor Drives,” IEEE Trans. Ind. Appl., Vol. 38, No. 5, pp. 1282-1289 (2002).
    [21]Umanand, L., and Bhat, S. R., “Online Estimation of Stator Resistance of an Induction Motor for Speed Control Applications,” IEE Proceedings of Electrical Power Applications, Vol. 142, No. 2, pp. 97-103 (1995).
    [22]Harnefors, L., and Ottersten, R., “Regenerating-Mode Stabilization of the “Statically Compensated Voltage Model”,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 818-824 (2007).
    [23]Hinkkanen, M., and Luomi, “Parameter sensitivity of full-order flux observers for induction motors,” IEEE Trans. Ind. Appl., Vol. 39, No. 4, pp. 1127-1135 (2003).
    [24]Hinkkanen, M., “Analysis and Design of Full-Order Flux Observers for Sensorless Induction Motors,” IEEE Trans. Ind. Electron., Vol. 51, No. 5, pp. 1033-1040 (2004).
    [25]Hinkkanen, M., and Luomi, J., “Stabilization of Regenerating-Mode Operation in Sensorless Induction Motor Drives by Full-Order Flux Observer Design,” IEEE Trans. Ind. Electron., Vol. 51, No. 6, pp. 1318-1328 (2004).
    [26]Suwankawin, S., and Sanngwongwanich, S., “A Speed-Sensorless IM Drive with Decoupling Control and Stability Analysis of Speed Estimation,” IEEE Trans. Ind. Electron., Vol. 49, No. 2, pp. 444-455 (2002).
    [27]Suwankawin, S., and Sangwongwanich, S., “Design Strategy of an Adaptive Full-Order Observer for Speed-sensorless Induction -Motor Drives-tracking performance and stabilization,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 96-119 (2006).
    [28]Bosee, B. K., Patel, N. R., “Quasi-fuzzy Estimation of Stator Resistance of Induction Motor, ” IEEE Trans. Ind. Appl., Vol. 13, No. 3, pp. 401-409 (1998).
    [29]Karanayil, B., Rahman, M. F., Grantham, C., “ Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 167– 176.(2007).
    [30]Bose, B. K., Patel, N. R., “A Sensoeless Stator Flux Orient Vector Controller Induction Motor Drive with Neuro-Fuzzy Based Performance Enhancement,” in Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meet.,Vol. 1,pp. 393-400 (1997).
    [31]Hu, Y. W., Zhong, L., Rahman, M. F., Lim, K. W., a. Rahman, Y. Xu, M., and Bhuiya, A. R., “Direct Torque Control of An Induction Motor Using Fuzzy Logic,” in Proc. IEEE Conf. Electrical and Computer Eng., Vol. 2, , pp. 767-772 (1997).
    [32]Bose, B. K., “Intelligent Control and Estimation in Power Electron -ics and Drivws, ” in Conf. Rec. IEEE Int. Electric Machines and Drives, pp. TA/2.1-TA/2.6 (1997).
    [33]Minh, T. C., Hoang, Le-Huy, “Rotor Resistance Estimation Using Fuzzy Logic for High Performance Induction Motor Ddrieves, ” in Proc. IEEE Annu. Conf. Ind. Electtron. Soc., Vol. 1, pp. 303-309 (1998).
    [34]Ouhrouche, M. A., Lefebvre, S., and Do, X. D., “Application of an Extended Kalman Filter to Rotor Speed and Resistance Estimation in Induction Motor Vector Control,” in Proc. IEEE Electrical and Compter Engineering, Vol. 1, pp. 297-300. (1998).
    [35]Atkinson, D. J., Acarnley, P. P., and Finch, J. W., “Application of eEstimation Techniques in Vector-Controlled Induction Motors Drives,” in Proc. Int. Conf. Power Electronics and Variable-Speed Drives, pp.258-363. (1990).
    [36]Wade, S., Dunnigan, M. W. and Willams, M. W., “Comparison of Stochastic and Deterministic Parameter Identification Algorithms for Induction Motor Vector Control, ” in Proc. IEE Colloq. Vector Control and Direct Torque Control of Insuction Motors, pp. 2/1-2/5. (1995).
    [37]Du, T. P. and Stronach, F., “Design and Application of Extended Observers for Join State and Parameter Estimation in High–Performance AC Drives,” IEE Proc. Electric Power Application, Vol. 142, No. 2, pp. 71-78. (1995).
    [38]Atkinson, D. J., Finch, J. W., and Acarnley, “Estimation of Rotor Resistance in Induction Motor, ” IEE Proc. Electric Power Application, Vol. 144, No. 5, pp. 285-294. (1997).
    [39]Dell, Aquila, Cupertino, A. F., Salvatore, L., and Stasi, S., “Kalman Filter Estimators Application to Robust Control of Induction Motor Drive,” in Proc. IEEE Annu. Conf. Ind. Electron. Soc., Vol. 4, pp. 2257-2262. (1998).
    [40]Wade, S., Dunnigan, M. W. and Willams, M. W., “Modeling and Simulation of Induction Machine Vector Control eith Rotor Resistance Identification,” IEEE Trans. Power Eledtron., Vol. 12, No. 3, pp. 495-505. (1997).
    [41]Marino, P.V., Mungigueera, V., Russso, F., and Vasca, F., “Parameter State Estimation for Induction Motors via Interlaced Least Squares Algorithm and Kalman Flter , ” in Conf. Rec. IEEE Annu. Power Electron. Specialists Conf., Vol. 2, pp. 1235-1241 (1996).
    [42]Zai, L.C., Demacro, C. L., and Lipo, T. A., “An Extended Kalman Filter Approach to Rotor Time Constant Measurement in PWM Induction Motor Drives, ” IEEE Trans. Ind. Appl., Vol. 28, No. 1, pp. 96-104 (1992).
    [43]Garcia, S., Mendes, G. E., and Razek, A., “Reduced-Order Obserbvers for Rotor Flux, Rotor Resistance and Speed Estimation for Vector Controller Induction Motor Drives Using the Kalman Filter Technique, ” IEE Proc. Electric Power Application, Vol. 146, No. 3, pp. 282-288 (1999).
    [44]Moucary, E., Garcia, C. S., and Mendes, E., “Robust Rotor Flux, Rotor Resistance and Speed Estimation of An Induction Machine Using the Extended Kalman Filter, ” in Proc. IEEE Int. Symp. Ind. Electrpon., Vol. 2, pp. 742-746 (1999).
    [45]Ouhrouche, M. A., “Vector Ccontrol of An Induction Mmotor with On-Line Rotor Resistance Iidentification,” in Proc. IEEE Conf. Electrical and Computer Engineering, Vol. 2, pp. 1121-1125 (1999).
    [46]Rashed, M., Stronach, A. F., “A Stable Back-EMF MRAS-Based Sensorless Low-speed Induction Motor Drive Insensitive to Stator Resistance Variation, ” IEE Proc. Power Appl., Vol. 151, No. 6, pp. 685-693. (2004).
    [47]Duran, M. D., Duran, J. L., Perez, F., and Fernandez, J., “Induction-Motor Sensorless Vector Control with Online Parameter Estimation and Overcurrent Protection,” IEEE Trans. Ind. Electron., Vol. 53, No. 1, pp. 154-161 (2006).
    [48]Zaky, M. S., Khater, M., Shokralla, S. S., and Yasim, H., “Wide-Speed-Range Estimation with Online Parameter Identific -ation sSchemes of Sensorless Induction Motor Drives,” IEEE Trans. Ind. Electron., Vol. 56, No. 5, pp. 1699-1707 (2009).
    [49]劉昌煥,交流電機控制:向量控制與直接轉矩控制原理,東華圖書股份有限公司,台北,台灣,第24-28頁 (2003).
    [50]Akatsu, K., Kawamura, A, “Sensorless Very Low and Zero Speed Estimations with On-line Secondary Resistance Estimation of Induction Motor without Adding any Signal,” in Conf. Rec. IEEE Ind. Appl. Conf., Vol. 1, pp. 187-193 (1999).
    [51]Shyu, K. K., and Pan, K. T., “Self-Decoupling of High Performance Induction Motor Drive,” in Proc. IEEE Int. Conf. Ind. Electron., pp. 1156-1159 (2001).
    [52]Tajima, H., and Hori, Y., “Speed Sensor-less Field-Orientation Control of the Induction Machine,” IEEE Trans. Ind. Appl., Vol. 29, No. 5, pp.175-180 (1993).
    [53]Guidi, G., and Umida, H., “A Sensorless Induction Motor Drive for Low Speed Applications Using A Novel Stator Resistance Estimation Method,“ in Conf. Rec. IEEE Ind. Appl. Conf., Vol. 1, pp. 180-186 (1999).
    [54]Comnac, V., Cernat, M., Cotorogea, M., and Draghici, “Sensorless Direct Torque and Stator Flux Control of Induction Machines Using an Extended Kalman Filter,” in Proc. IEEE Int. Conf. Control appl., pp. 674-679 (2001).
    [55]Blaschke, F., “The Principle of Field Orientation as Applied to The New Transvector Closed Loop Control System in A PWM Inverter Induction Motor Drives,” Siemens Rev., Vol. 39, No. 5, pp. 217-220 (1972).
    [56]Zaky, M. S., Khater, M. M., Shokralla, S. S., and Yasin, H. A., “Wide-Speed-Range Estimation With Online Parameter Identification Schemes of Sensorless Induction Motor Drives,” IEEE Trans. Ind. Appl., Vol. 56, No. 5, pp. 1699-1707 (2009).
    [57]Rashed M., MacConnell, P. F. A., Stronach, A. F., and Acarnley, P., “Sensorless Indirect-Rotor-Field-Orientation Speed Control of a Permanent-Magnet Synchronous Motor With Stator-Resistance Estimation,” IEEE Trans. Ind. Appl. Vol. 54, No. 3, pp. 1664-1675 (2007).
    [58]C. Schauder, “Adaptive Speed Identification for Vector Control of Induction Motors without Rotational Transducers,” in IEEE Ind. Appl. Soc. Annu. Meeting, San Disco, CA, pp. 493-499 (1989).
    [59]Peng, F. Z., Fukao, T., and Lai, J. S., “Robust Speed Identification for Speed-Sensorless Vector of Induction motors,” IEEE Trans. Ind. Appl., Vol. 30, No. 5, pp. 1234-1240 (1994).
    [60]Ohtani, T., Takada, N., and Tanaka, K., “Vector Control of Induction Motor without Shaft Encoder,” IEEE Trans. Ind. Appl., Vol. 28, No. 1, pp. 157-165 (1992).
    [61]Harnefors, L., and Hinkkanen, M., “Complete Stability of Reduced-Order and Full-Order Observers for Sensorless IM Drives,” IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1319-1329 (2008).
    [62]Kubota, H., Matsuse, K., and Nakano, T., “DSP-Based Speed Adaptive Flux Observer of Induction Motor,” Transactions on IEEE industry Applications, Vol. 29, No. 2, pp.344 – 348 (1993).
    [63]Kim, J., Kwanghee, N., Chung, J., and Sunwoo, H., “Sencorless Vector Control Scheme for Induction Motors Based on a Stator Flux Estimator With Quadrant Error Compensation Rule,” Trans. Ind. Appl., Vol. 39, No. 2, pp. 492-503 (2003).
    [64]Habetler, T. G., Profumo, F., Griva, G., Pastorelli, M., and Bettini, A., “Stator Resistance Tuning in a Stator-Flux-Field- Oriented Drive Using An Instantaneous Hybird Fluz Estimator,” IEEE Trans. Power Electronics, Vol. 13, No. 1, pp. 125-133 (1998).
    [65]Xu, X., and Novotny, D. W., “Implementation of Direct Stator Flux–Oriented Control on a Versatile DSP Based System,” IEEE Trans. Ind. Appl., Vol. 29, No. 4, pp. 694-700 (1991).
    [66]Hotlz, J., and Khambakone, A., “Vector Control Induction Motor Drive with a Self-Commissioning Scheme, ” IEEE Trans. Ind. Electron., Vol. 38, pp. 322-327 (1991).
    [67]Shine, M. H., Hyun, D. S., Cho, S. B., and Choe, S. Y., “An Improved Stator Flux Estimation for Speed Sensorless stator Fflux Orientation Control of Induction Motors,” IEEE Trans. Power Electron., Vol. 15, No. 2, pp. 312-318 (2000).
    [68]Comanescu, M., and Utkin, V., “A Sliding Mode Adaptive MRAS sSpeed Estimator for Induction Motors, ” in Proc. IEEE Int. Symp. Ind. Electron., pp. 634-638 (2008).
    [69]Gadoue, S. M., Giaouris, D., Finch, J. W., ”A Neural Network Based Stator Current MRAS Observer for Speed Sensorless Induction Motor Drives,“ in Proc. IEEE Int. Symp. Ind. Electron., pp. 650-655 (2008).
    [70]Haron, A.R., and Idris, N.R.N., “ Simulation of MRAS-Based Speed Sensorless Estimation of Induction Motor Drives Using MATLAB/SIMULINK,” in Proc. IEEE Int. Conf. Power and Energy, pp. 411-415 (2006).
    [71]Kubota, H., and Matsuse, K., “Speed Sensorless Field-Oriented Control of Induction Motor with Rotor Resistance Adaptation,” IEEE Trans. Ind. Appl., Vol. 30, No. 5, pp. 1219-1224 (1994).
    [72]Zhao, Kun, and You, Xiaojie, “Speed Estimation of Induction Motor Using Modified Voltage Model Flux Estimation, ” in Proc. IEEE Int. Comf. Power Electron. and Motion Control, pp.1979-1982 (2009).
    [73]Zhao, Kun, Lin, Fei, and You, Xiaojie, “A Modified Voltage Model Flux Estimation of Induction Motors,” in Proc. IEEE Int. Conf. Electrical Machines and System, pp. 94-97 (2008).
    [74]Nian, X., Wang, J., Gui, W., Huang, J., and Huang, Z., “A Constant Gain Adaptive Observer for Speed and Resistances Identification,” in Conf. Rec. IEEE Ann. Meet. Conf. Ind. Appl., Vol. 2, pp. 712-718 (2006).
    [75]Ha, I. J., and Lee, S. H., “An Online Identification Method for Both Stator and Rotor Resistances of Induction Motors without Rotational transducers,” IEEE Trans. Ind. Appl., Vol. 47, No. 4, pp.842-853 (2000).
    [76]Iqbal, A., Moinuddin, S., Khan, M.R., and Ashraf, I., “Indirect Rotor Flux Oriented Control of A Seven-Phase Induction Motor Drive,” in Proc. IEEE Int. Conf. Ind. Appl., pp. 440-445 (2006).
    [77]Zhou, Y., Li, Y., and Zheng, Z., “Research of Speed Sensorless Vector Control of An Induction Motor Based on Model Reference Adaptive System, ” in Proc. IEEE Int. Conf. Electrical Machines and System, pp. 1381-1384 (2008).
    [78]Harnefors, L. “Instability phenomena and Remedies in Sensorless Indirect Field Oriented Control,” IEEE Trans. Power Electron., Vol. 15, No. 4, pp. 733-743 (2000).
    [79]Ghanes, M., and Gang Z., “On Sensorless Induction Motor Drives: Sliding-Mode Observer and Output Feedback Controller,” IEEE Trans. Ind. Electron., Vol. 56, No. 9, pp. 3404-3413 (2009).
    [80]Griva, G., Profumo, F., and Twnconi, A., “A New Graphic Method for Stability Analysis of Speed Sendorless F.O. Controlled Induction Motor Drives Working at Low Speed in Regenerative Mode,” in Proc. IEEE International Symposium. Ind. Electronics, Vol. 2, pp. 380-384 (1998).
    [81]Pinjia, Z., Bin, L., and Habetler, T. G., “A Remote and Sensorless Stator Winding Resistance Estimation Method for Thermal Protection of Soft-Starter-Connected Induction Machines,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, pp. 3611– 3618 (2008).
    [82]Lopez, J. Ci., Romeral, L., Arias, A., and Aldabas, E., “Novel Fuzzy Adaptive Sensorless Induction Motor Drive,” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1170-1178 (2006).
    [83]Salomaki, J., Hinkkanen, M., and Luomi, J., “Sensorless Control of Induction Motor Drive Equipped with Inverter Output Filter, ” IEEE Trans. Ind. Electron., Vol. 53, No. 4, pp. 1188-1197 (2006).
    [84]Cirrincione, M., Pucci, M., Cirrincione, G., and Capolino, G. A., “Sendorless Control of iInduction Motor by Reduced Order Observer with MCA EXIM+based Adaptive Speed Estimation,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 150-166 (2007).
    [85]Gao, Q., Asher, G., and Sumner, M., “Sensorless Position and Speed Control of Induction Motor Using High-Frequency Injection and without Offline Precommissioning,” IEEE Trans. Ind. Electron., Vol. 54, No. 5, pp. 2474-2481 (2007).
    [86]Barut, M., Bogosyan, S., and Gokasan, M., “Speed-Sensorless Estimation for Induction Motors Using Extended Kalman Filter,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 272-280 (2007).
    [87]de Almeida Souza, D., de Aragao Filho, W. C. P., and Sousa, G. C. D., “Adaptive Fuzzy Controller for Efficiency Opimization of Induction Motors,” IEEE Trans. Ind. Electron., Vol. 54, No. 4, pp. 2157-2164 (2007).
    [88]Nian, X., Wang, T., Wang, J., Gui, W., and Huang, J., “Adaptive Stator Resistance Estimation Method for Speed Sensorless DTC Controlled IM Drives,” in Proc. IEEE Applied Power Electronics Conference, pp. 214 – 221 (2007).
    [89]Kubota, H., Matsuse, K., and Nakano, T., “New Aadaptive Flux Observer of Induction Motor for Wide Speed Range Motor Drives,” in Proc. IEEE Industrial Electronics Society, Vol. 2, pp. 921-926 (1990).
    [90]Marino, R., Peresada, S., and Tomei, P., “On-line Stator and Rotor Resistance Estimation for Induction Motors,” Transactions on IEEE Control Systems Technology, Vol. 8, No. 3, pp. 570 - 579 (2000).
    [91]Guidi, G., and Umida, H., “A Novel Stator Resistance Estimation Method for Speed-Sensorless Induction Motor Drives,” Transactions on IEEE Industry Applications, Vol. 36, No. 6, pp. 1619 – 1627 (2000).
    [92]Raison, B., Arza, J., Rostaing, G., and Rognon, J. P., “Comparison of Two Extended Observers for The Resistance Estimation of An Induction Machine,” in Proc. IEEE Industry Applications Conference, Vol. 2, pp. 1330 - 1335 (2000 ).
    [93]Monti, A., Pironi, F., Sartogo, F., and Vas, P., “A New State Observer for Sensorless DTC Control,” in Proc. Power Electronics and Variable Speed Drives, pp. 311 – 317 (1998).
    [94]Nayyem, S. M., and Husain, I., “A Luenberger-Sliding Mode Observer for Online Parameter and Adaptation in High-Performance Induction Motor Drives,” IEEE Trans. Ind. Appl., Vol. 45, No. 2, pp. 772-781 (2009).
    [95]Loron, L., and Laliberte, G., “Application of The Extended Kaman Filter to Parameter Estimation of Induction Motors,” in Proc. Conf. EPE, Brighton, pp. 85-90 (1993).
    [96]Tsuji, M., Chen, S., Izumi, K. and Yamada, E., “A Sensorless Vector Control System for Induction Motors Using q-axis Flux with Stator Resistance Identification,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 1, pp. 185 – 194 (2001).
    [97]Mitronikas, E. D., Safacas, A. N., and Tatakis, E. C., “A New Stator Resistance Tuning Method for Stator-Flux-Oriented Vector–Contro -lled Induction Motor Drive,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 6, pp. 1148-1157 ( 2001).
    [98]Karanayil, B., Rahman, M. F. and Grantham, C., “Online Stator and Rotor Resistance Estimation Scheme Using Artificial Neural Networks for Vector Controlled Speed Sensorless Induction Motor Drive,” IEEE Trans. industrial Electronics, Vol. 54, pp. 167 – 176 (2007).
    [99]Joetten, R., Maeder, G., “Control Methods for Good Dynamic Performance Induction Motor Drives Based on Current and Voltage as Measured Quantities,” IEEE Trans. Ind. Appl., Vol. IA-19, pp. 356-363 (1983).
    [100]羅永昌,適應性定子電阻估測與轉矩漣波最小化之無量測器直接轉矩控制感應馬達驅動器,博士論文,國立台灣科技大學,台北(2000)。
    [101]詹前茂,向量控制感應馬達驅動器之自我啟始運轉,國立台灣工業技術學院,博士論文,台北 (1997)。

    QR CODE