簡易檢索 / 詳目顯示

研究生: 林世佳
Shi-Jia Lin
論文名稱: 可攜式非接觸式表面粗糙度與輪廓量測系統整合於機器手臂進行機上量測之研究
Research on the On-Machine Measurement by Integrating a Portable Non-contact Measuring System for Surface Roughness and Surface Profile with a Robotic Arm
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 修芳仲
Fang-Jung Shiou
鄧昭瑞
Zhao-Rui Deng
陳亮光
Liang-Guang Chen
謝宏麟
Hong-Lin Xie
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 152
中文關鍵詞: 可攜式光學量測系統非接觸式量測表面粗糙度量測表面輪廓量測
外文關鍵詞: Portable non-contact laser measurement system, Reflected light intensity distribution method, Nine-point mask, Surface roughness measurement, Surface profile measurement
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要將可攜帶式非接觸式雷射表面量測系統整合於機器手臂上,以實現對拋光後工件的即時量測。本研究開發的量測系統能夠同時對表面粗糙度和表面輪廓進行評估分析。
    本研究主要使用LabVIEW作為主要程式開發平台,並整合NI Vision Assistant以及MATLAB等軟體。透過NI Vision Assistant,可對擷取到的影像進行初步的影像濾波規劃。輪廓量測程式使用MATLAB進行撰寫,用以計算輪廓預估方程式,並將其整合至LabVIEW主程式中。所有這些步驟的程式碼皆在LabVIEW中以圖形化方式進行撰寫,以確保整體流程更加清晰且易於管理。
    本量測系統的功能可分為兩個主要部分,分別是表面粗糙度量測和輪廓量測。表面粗糙度量測部分,本研究使用以中心點為主的九個點遮罩,並運用反射光能量法,分析反射光斑的亮度資訊,找出與實際粗糙度值之間的關係,以進行擬合趨勢方程式,用以預估物件表面粗糙度。本研究發現利用線性型式擬合趨勢方程式,當門檻值於60時,可靠度達到0.9837,可針對0.02μm-0.17μm範圍之試片進行量測。
    關於輪廓量測部分,本研究利用不同曲面會反射雷射光斑於屏幕上的不同位置,藉以建立曲面的反射光點位置與表面參數之間的關係方程式。輪廓量測則由關係方程式可應用於量測圓柱體、標準鋼球及實驗室自製之鞍型面工件,經實驗結果與三次元量測儀所取得的數據進行誤差比對,達到相當程度吻合。


    This study mainly focuses on integrating a portable non-contact laser surface measurement system with a robotic arm to achieve on-machine measurement of the polished workpieces. Simultaneously, the developed system can be applied to evaluate and analyze the surface roughness and contour of the polished workpiece.
    In this research, the LabVIEW software has been used as the main programming platform, and the other software, such as NI Vision Assistant and MATLAB, have been integrated with the LabVIEW. Through NI Vision Assistant, preliminary image filtering is conducted on the captured images. The contour measurement program is developed by using the MATLAB to calculate the contour estimation equation, which is integrated with the LabVIEW main program. All the codes for these measuring procedures are written in a graphical manner within LabVIEW, to ensure a clearer and more manageable overall process.
    The functions of the developed laser measurement system can be divided into two main parts, namely the roughness measurement and the contour measurement. Regarding the roughness measurement, the method of a nine-point mask with the central point as the focus has been utilized. The reflective light intensity method is employed to analyze the brightness information of the reflected light spot, to identify the relationship between the intensity distribution and the actual surface roughness values. The surface roughness of the test objects can be estimated by the linear regression equation. The research found that using a linear fitting equation with a threshold value of 60 achieved a reliability of 0.9837, for the measurements of the objects within the range of 0.02μm to 0.17μm.
    Concerning the contour measurement, a relationship equation between the image-coordinates of the reflected points on the screen and the coordinates of the workpiece surface has been established by finishing a calibration. The contour measurement can be obtained by applying this relationship equation to measure the cylindrical surface, the spherical surface of a standard steel ball, and the profile of a laboratory-manufactured saddle-shaped workpiece. The experimental results are compared with the data obtained from a coordinate measuring machine, demonstrating a satisfied consistency.

    摘要 III Abstract V 誌謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3研究方法與論文架構 7 第二章 量測系統相關原理 9 2.1 表面特徵 9 2.2反射光能量法[1] 12 2.3 鏡面反射原理 16 2.4 三角量測校驗法[21] 17 2.5 開普勒擴束定律[36] 20 2.6 數位影像處理[37] 21 2.6.1 影像平滑濾波 21 2.6.2 自動二值化 23 2.6.3 影像形態學 26 2.7 粗糙度量測演算法 28 2.7.1 數位影像處理 29 2.7.2 光能量統計法 30 2.8 輪廓量測演算法 34 2.8.1 屏幕距離誤差 36 第三章 量測系統架構 39 3.1 光路設計 39 3.2 系統架構 40 3.3 光學元件 41 3.3.1 雷射光源 41 3.3.2 反射鏡 42 3.3.3 擴束鏡 43 3.3.4 光圈 43 3.3.5 遮罩 44 3.4 取像系統 45 3.4.1 CCD工業相機 45 3.4.2 鏡頭 46 3.5 六軸機器手臂 47 3.6 軟體控制模組 48 3.7 雷射光源亮度調整系統 49 3.8 量測比對設備 50 第四章 實驗結果與數據分析 53 4.1 實際粗糙度量測結果 53 4.1.1 門檻值決定 56 4.1.2 粗糙度趨勢預估 59 4.1.3標準差與粗糙度趨勢分析 60 4.2 表面輪廓量測 63 4.2.1 反射光點校驗 66 4.2.2 實際曲面量測 78 第五章 結論與未來展望 85 5.1 結論 85 5.2 未來展望 86 參考文獻 88 附件一 94 附件二 95 附件三 97 附件四 98 附件五 100 附件六 101 附件七 125 附件八 130 附件九 135

    [1] P. Beckmann, A. Spizzichino, “The Scattering of Eletromagnetic Waves from Rough Surfaces,” Pergamon Press Ltd., Chap.1-5,1987
    [2] D. J. Whitehouse, “Comparison between Stylus and Optical Methods for Measuring Surfaces.” Annals of the C.I.R.P., Vol. 37, pp. 649-653, 1988.
    [3] E. Kayahan, H. Oktemb, F. Hacizade, H. Nasibov, O. Gundogdu, “Measurement of surface roughness of metals using binary speckle image analysis,” Tribology International, Vol. 43, pp. 307-311, 2010.
    [4] R. Guo, Z. Tao, “Experimental investigation of a modified Beckmann-Kirchhoff scattering theory for the in-process optical measurement of surface quality,” Optik: International Journal for Light and Electron Optics, Vol. 122, No. 21, 2011.
    [5] M. Shimizu, H. Sawano, H. Yoshioka, H. Shinno, “Surface texture assessment of ultra-precision machined parts based on laser speckle pattern analysis,” Precision Engineering, Vol. 38, pp. 1-8, 2014.
    [6] J. Liu, E.H. Lu, H.A. Yi, P. Ao, “Grinding surface roughness measurement based on image quality assessment,” Journal of Electronic Measurement and Instrumentation, Vol. 30, No. 3, 2016.
    [7] P.A.S. Guru, M.V. Matham, K.H.K. Chan, “Fiber Optic Probe for Surface Roughness Measurement of ALM Samples Based on Laser Speckle Intensity,” IEEE International Conference On Recent Trends In Electronics Information Communication Technology, May 20-21, 2016.
    [8] I. Robles-Urquijo, M. Lomer, L. Rodriguez-Coboand, J. M. Lopez Higuera, “Non-contact vibration analysis using speckle-based techniques,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 10323, 2017.
    [9] G. Sajjad, G.K. Saeideh, M. Mohsen, “Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces,” Journal of the Optical Society of America A, Vol. 35, No. 6, pp 998-1013, 2018.
    [10] D. Xu, Q. Yang, F. Dong, S. Krishnaswamy, “Evaluation of surface roughness of a machined metal surface based on laser speckle pattern”, The Institution of Engineering and Technology, Vol. 2018, No. 9, pp. 773-778, 2018.
    [11] S. Bharathi, M.M. Ratnam, “Evaluation of 3D surface roughness of milled surfaces using laser speckle pattern,” IOP Conference Series: Materials Science and Engineering, Vol. 530, No. 1, 2019.
    [12] T. Wada, S.Koyama, H. Ishizawa, “Simple construction of calibration curve and surface roughness detection in surface roughness detection by speckle contrast method,” Journal of the Illuminating Engineering Institute of Japan, Vol. 103, No. 6, pp. 195-200, 2019.
    [13] Dhiren R. Patel, M.B. Kiran, “A non-contact approach for surface roughness prediction in CNC turning using a linear regression model,” Materials Today: Proceedings, Vol. 26, No. 2, pp. 350-355, 2020.
    [14] Achmad P. Rifai, Hideki Aoyama, Nguyen Huu Tho, Siti Zawiah Md Dawal, Nur Aini Masruroh, “Evaluation of turned and milled surfaces roughness using convolutional neural network,” Measurement, Vol. 161, 2020.
    [15] E. Baradit, C. Gatica, M. Yáñez, J. C. Figueroa, R. Guzmán, C. Catalán, “Surface roughness estimation of wood boards using speckle interferometry,” Optics and Lasers in Engineering, Vol. 128, 2020.
    [16] G. Praveen, Inturi Vamsi, Kurra Suresh, Sudha Radhika, “Evaluation of surface roughness in incremental forming using image processing based methods,” Measurement, Vol. 164, 2020.
    [17] Yan He, Wei Zhang, Yu-Feng Li, Yu-Lin Wang, Yan Wang, Shi-Long Wang, “An approach for surface roughness measurement of helical gears based on image segmentation of region of interest,” Measurement, Vol. 183, 2021.
    [18] V.M. Castilho, W.F. Balthazar, L. da Silva, T.J.P. Penna, J.A.O. Huguenin, “Machine learning classification of speckle patterns for roughness measurements,” Physics Letters A, Vol. 468, 2023.
    [19] Y. Bickel, G. Hausler, M. Mual, “Triangulation with Expanded Range of Depth,” Opt. Eng., Vol. 24, pp.975-977, 1985.
    [20] 修芳仲,「SMC試片表面特性量測法研究」,國立台灣大學機械工程研究所碩士論文,1990。
    [21] K. C. Fan, F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precision Engineering, Vol. 21, pp. 112-197, 1997.
    [22] C.W. Tang, X.C. Liang, C.P. Zou, “Analysis on Modern Measuring Methods of Curved Surfaces,” SPIE, Vol. 2101, pp.122-124, 1993.
    [23] W.C. Tai, M. Chang, “Noncontact Profilometric Measurement of Large-Form Parts,” Optical Engineering, Vol. 35, No. 9, pp.2730-2735, 1996.
    [24] H. Kosler, U. Pavlovčič, M. Jezeršek, J. Možina, “Adaptive Robotic Deburring of Die-Cast Parts with Position and Orientation Measurements Using a 3D Laser-Triangulation Sensor,” Strojniski Vestnik/Journal of Mechanical Engineering, Vol. 62, No. 4, pp. 207-212, 2016.
    [25] M. Jezeršek, M. Kos, H. Kosler , J. Možina, “Automatic teaching of a robotic remote laser 3D processing system based on laser-triangulation profilometry,” Tehnicki Vjesnik, Vol. 24, No. 1, pp.89-95, 2017.
    [26] S. Shao, X. Tao, X. Wang, “On-machine surface shape measurement of reflective mirrors by ultra-precision turning based on fringe reflection,” Laser and Optoelectronics Progress, Vol. 55, No. 7, 2018.
    [27] 陳信儒,“以可程式化單一條紋反射法或結構光條紋投射法開發物體表面輪廓量測系統”,國立臺灣科技大學機械工程學系碩士論文,2008年。
    [28] 詹啟孟,“可攜帶式船用複合材料表面特徵光學量測系統之研製”,國立臺灣科技大學機械工程學系碩士論文,2009年。
    [29] 賴耀梓,“輕量化可攜式複合材料螺紋印量測器之研製”,國立臺灣科技大學機械工程學系碩士論文,2010年。
    [30] 羅楚雲,“可攜式表面粗糙度及輪廓之光學量測系統開發”,國立臺灣科技大學機械工程學系碩士論文,2012年。
    [31] 陳映喬,“可攜式非接觸式表面粗糙度與輪廓量測系統”,國立臺灣科技大學機械工程學系碩士論文,2019年。
    [32] 李安,“可攜式非接觸式表面粗糙度與輪廓量測系統之改良研究”,國立臺灣科技大學機械工程學系碩士論文,2020年。
    [33] T.R. Thomas, Rough Surfaces, Imperial College Press, London, pp.3-5, 1999.
    [34] ASME B46.1. Surface texture (surface roughness, waviness, and lay), 1995.
    [35] 范光照、張郭益,精密量具及機件檢驗,高立圖書有限公司,1998.
    [36] 林凡異,「光電實驗講義」,國立清華大學,電機工程學系/光電工程研究所,2000.
    [37] 鍾國亮,「影像處理與電腦視覺」,東華書局股份有限公司,2015.
    [38] N. Otsu, “A threshold selection method from gray level histogram,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-9, pp. 62-66, 1979.
    [39] Z-Laser Corporation Germany, “ZM18-DM Laser,” https://z-laser.com/en/product/laser-modules/zm-laser-family/zm18/
    [40] 銓州光電,「線上目錄 -光圈」,https://www.onset-eo.com/product/iris-diaphragm/
    [41] The Imaging Source,「DMK33UX25工業相機」 https://reurl.cc/NelZ9
    [42] MORITEX 產品,http://cn.moritex.com/model/1-1-2-4-3-03.html
    [43] “FANUC Robot M-10iA 機構部操作說明書 Edition 04”,FANUC CORPORATION,2008年.
    [44] ASSAB瑞典優質鋼材,台灣盛百股份有限公司,2003.

    QR CODE