簡易檢索 / 詳目顯示

研究生: 林俊成
Chun-Chen Lin
論文名稱: 路徑及軌跡規劃之最佳化設計於機械手臂研究
Study on Optimal Design of Path and Trajectory Planning for Robot Manipulators
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 蔡明忠
Ming-Jong Tsai
陳金聖
Chin-Sheng Chen
楊振雄
Cheng-Hsiung Yang
郭永麟
Yong-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 161
中文關鍵詞: 路徑規劃速度規劃最佳化演算法
外文關鍵詞: path planning, speed planning, optimization algorithm
相關次數: 點閱:759下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著科技的發展近年來由於機電整合和人工智慧的進步,工業上在自動化設備及機械手臂應用領域逐漸多元化,根據使用者的需求,我們首先需擬定設備的動作路徑,路徑規劃是否平滑且符合硬體之規格定位精確,以及路徑是否能通過我們所設定的各控制點位置尤其重要,接著在路徑規劃完後,我們會做速度上的規劃,速度規劃是否無震盪現象且符合硬體之極限值下加速運轉,以及速度是否具有連續性並使得設備運轉達到最好的效能,這都是值得我們進一步去探討的議題,於此本文會在飛剪機構與硬碟點膠機兩個應用案例,針對路徑規劃和速度規劃做分析與討論。

飛剪機構研究部份,基於已有的同步區運動學模型,本文將S-curve曲線及三階多項式曲線作為機構上非同步區主軸與從軸之動作規劃,透過最佳化演算法設定限制條件及目標函數,解決飛剪機構運動上從軸反轉之問題,與降低最大速度能耗的效用性。在硬碟點膠機研究部份,我們首先探討路徑規劃B-spline曲線在各類型節點向量之設定差異性,基於已有的B-spline曲線數學模型我們再介紹NURBS曲線,並比較B-spline曲線與NURBS曲線的差異性,而傳統上這兩種曲線所形成的路徑皆無法通過中間的控制點位置,於此本文針對這點缺陷透過虛擬控制點將NURBS曲線修改為通過控制點式,然後使用最佳化演算法探討其平滑性,接著我們利用S-curve、Sine-curve、三次多項式等曲線進行速度規劃,並使用基因演算法與牛頓法等最佳化演算法限制其速度範圍將總時間設定為目標函數,達到速度平滑且符合硬體之極限值下速度具有連續性並使得設備運轉達到最好的效能。


With the development of science and technology, the electromechanical integration and artificial intelligence have improved in recent years. The industry application is gradually diversifying in the fields of automation equipment and robotic arm. According to the requirement of users, we have to design moving path of equipment at first. It is very important that the path planning is smooth and below the limit of the hardware specifications to locate position, and the path can pass through each of the control points. After the path planning is completed, we will do speed planning. Besides, it is worth to discuss that the speed has no oscillation and conforms to the hardware accelerating operation limit, and the speed is continuous and makes
the equipment reach the best performance. This thesis will mainly focuses on flying shear mechanism and dispensing machine two cases. Finally we will analyze path planning and speed planning results.

In flying shear mechanism part, based on existing kinematic model of synchronized zone, this thesis takes the S-curve and the third-order polynomial curve as the motion of master axis and the slave axis in the unsynchronized area. We use the optimization algorithm to set constraints and objective function solving slave axis reversal problem and reducing maximum speed energy consumption. In dispensing machine part, we discuss the difference in setting of B-spline curve for each type of node vector at first. Based on B-spline curve mathematical model, we introduce NURBS curve later. And then we compare difference between B-spline curve and NURBS curve. Traditionally, the paths formed by these two kinds of curves can’t
pass through the middle control points position. In this thesis, we use virtual control points to modify NURBS curve passing the control points position. We use optimization algorithm to discuss its smoothness. And we use S-curve、Sine-curve、third-order polynomial curve to do speed planning. Finally we use Genetic algorithm and Newton's method optimization algorithm to restrict its speed range and set total times as the objective function. This method make the curve smoothly and conform to the hardware operation limit. Also, the curve planning is continuous and make the equipment have the best operation efficacy.

摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xv 第1章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 路徑與速度規劃 2 1.2.2 最佳化演算法 4 1.3 研究動機 5 1.4 研究方法 6 1.5 論文架構 7 第2章 路徑與速度規劃 8 2.1 路徑規劃 8 2.1.1 B-spline曲線 8 2.2.2 NURBS曲線 18 2.2 速度規劃 21 2.2.1 S-curve曲線 21 2.2.2 Sine-curve曲線 24 2.2.3 三次多項式曲線 26 2.3 路徑與速度規劃結合 27 2.4 規劃流程 29 第3章 最佳化演算法 31 3.1 牛頓法 31 3.1.1 牛頓法概論 31 3.1.2 Matlab使用方法 33 3.2 最佳化基因演算法 34 3.2.1 基因演算法概論 34 3.2.2 基因演算法架構 34 3.2.3 Matlab使用方法 39 第4章 應用案例-飛剪機構 40 4.1 飛剪機構簡介 40 4.2 飛剪機構運動學 41 4.3 路徑與速度規劃 44 4.3.1 S-curve曲線 44 4.3.2 三次多項式曲線 52 4.4 討論 59 第5章 應用案例-硬碟點膠機 60 5.1 硬碟點膠機簡介 60 5.2 路徑規劃 61 5.2.1 B-spline曲線 61 5.2.2 最佳化B-spline曲線 68 5.2.3 NURBS曲線 71 5.2.4 最佳化NURBS曲線 78 5.3 速度規劃 86 5.3.1 S-curve曲線 86 5.3.2 Sine-curve曲線 111 5.3.3 三次多項式曲線 119 5.4 路徑與速度規劃結合 150 5.5 討論 153 第6章 結論與未來展望 155 6.1 結論 155 6.2 未來展望 156 參考文獻 157

[1]H. Prautzsch, W. Boehm and M. Paluszny, “Bézier and B-Spline techniques,”
Computer Science and Image Processing published by Springer, Mar. 2002.
[2]許家彬, “以B-Spline曲線建立螺旋狀彈簧及有限元素應力分析,” 國立成功大學機械工程研究所, 碩士論文, (2013).
[3]紀易廷, “基於B-Spline曲線之撓性雙穩態機構的最佳化設計與特性分析,” 國立中興大學精密工程研究所, 碩士論文, (2017).
[4]蕭煜成, “以B-Spline為基礎的STEP模型適應性切層演算研究,” 國立高雄應用科技大學模具工程研究所, 碩士論文, (2012).
[5]J. Z. Huang, “Stereo matching based on segmented B-spline surface fitting and accelerated region belief propagation,” IET Computer Vision, vol. 9, no. 4, pp.
456-466, Jul. 2015.
[6]M. Rouhani, A. D. Sappa, E. Boyer, “Implicit B-Spline surface reconstruction,”
IEEE Trans. Image Process., vol. 24, no. 1, pp. 22-32, Jan. 2015.
[7]F. P. Arribas and R. P. Fernández, “A B-spline design model for propeller blades,”Computer-Aided Design., vol. 118, pp. 35-44, Apr. 2018.
[8]M. Elbanhawi, M. Simic and R. Jazar, “Randomized bidirectional B-Spline parameterization motion planning,” IEEE Trans. Intelligent Transportation
Systems., vol. 17, no. 2, pp. 406-419, Feb. 2016.
[9]P. L. Chang, A. Rolls, H. D. Praetere, E. V. Poorten, C. V. Riga, C. D. Bicknell, D. Stoyanov, “Robust catheter and guidewire tracking using B-Spline tube model and pixel-wise posteriors,” IEEE Robotics and Automation Letters., vol.1, no. 1, pp. 303-308, Jan. 2016.
[10]D. F. Rogers, “An introduction to NURBS with historical perspective,” A
volume in The Morgan Kaufmann Series in Computer Graphics published by Morgan
Kaufmann, 2001.
[11]林維俐, “以NURBS曲線改善由GPS軌跡產生之數位地圖,” 大同大學資訊工程研究所, 碩士論文, (2010).
[12]陳宛竺, “NURBS曲面的多軸切削路徑選擇,” 國立台北科技大學機電整合工程研究所, 碩士論文, (2013).
[13]H. Ghasemi, R. Brighenti, X. Zhuang, J. Muthu and T. Rabczuk, “Optimization of fiber distribution in fiber reinforced composite by using NURBS functions,”
Computational Materials Science., vol. 83, pp. 406-419, Feb. 2016.
[14]A. G. Au, D. Palathinkal, A. B. Liggins, V. J. Raso, J. Carey, R. G. Lambert and A. Amirfazli, “A NURBS-based technique for subject-specific construction of knee bone geometry,” Computer Methods and Programs in Biomedicine., vol.92,
no. 1, pp. 20-34, Oct. 2008.
[15]M. C. Tsai and C. W. Cheng, “A real-time predictor-corrector interpolator for CNC machining,” Manufacturing Science and Engineering., vol. 125, no. 3, pp.
449-460, Jul. 2003.
[16]S. H. Nam and M. Y. Yang, “A study on a generalized parametric interpolator with real-time jerk-limited acceleration,” Computer-Aided Design., vol. 36, no.1,
pp. 27-36, Jan. 2004.
[17]G. Zhao, Y. Zhao, S. Wang, “The acceleration/deceleration control algorithm based on trapezoid-curve jerk in CNC machining,” Journal of Applied Sciences, Engineering and Technology., vol. 13, no. 5, pp. 3543-3548, Apr. 2013.
[18]C. G. L. Bianco, “minimum-jerk velocity planning for mobile robot
applications,” IEEE Transactions on Robotics., vol.29, no.5, pp.1317-1326,
May. 2013.
[19]T. C. Lu and S. L. Chen, “Genetic algorithm-based S-curve acceleration and deceleration for five-axis machine tools,” Advanced Manufacturing Technology.,
vol. 87, no. 1-4, pp. 219-232, Oct. 2016.
[20]C. Han, L. Wang, Z. Zhang, J. Xie, Z. Xing, “A multi-objective genetic
algorithm based on fitting and interpolation,” IEEE Recent Computational Methods in Knowledge Engineering and Intelligence Computation., vol.6, pp.
22920-22929, Apr. 2018.
[21]A. Askarzadeh, “A memory-based genetic algorithm for optimization of power generation in a microgrid,” IEEE Transactions on Sustainable Energy., Oct. 2017.
[22]D. Betancourt, M. Barahona, K. Haase, G. Schmidt, A. Hübler, F. Ellinger, “Design of printed chipless-RFID tags with QR-Code appearance based on genetic algorithm,” IEEE Transactions on Antennas and Propagation., vol.65, no.5,
pp. 2190-2195, Mar. 2017.
[23]F. T. Werner and R. N. Dean, “Characterising a PCB electrical conductivity sensor using electromagnetic simulation and a genetic algorithm,” IET Science
Measurement and Technology., vol.11, no.6, pp. 761-765, Sep. 2017.
[24]Y. Sun, W. Dong, Y. Chen, “An improved routing algorithm based on ant colony optimization in wireless sensor networks,” IEEE Communications Letters., vol.21,
no.6, pp. 1317-1320, Feb. 2017.
[25]X. Li, X. Li, W. Jiang, W. Zhou, “Optimising thermal sensor placement and thermal maps reconstruction for microprocessors using simulated annealing algorithm based on PCA,” IET Circuits Devices and Systems., vol.10, no.6, pp.
463-472, Nov. 2016.
[26]J. Nagler, P. Cerejeiras, B. Forster, “Lower bounds for the approximation with variation-diminishing splines,” Journal of Complexity., vol.32, no. 1, pp. 81-91,Feb. 2016.
[27]A. C. Lee, M. T. Lin, Y. R. Pan, W. Y. Lin, “The feedrate scheduling of NURBS interpolator for CNC machine tools,” Computer-Aided Design., vol. 43, no. 6,
pp. 612-628, Jun. 2011.
[28]謝宗翰,最佳化牛頓法, “https://ch-hsieh.blogspot.com/2012/04/generalized-
newton-raphson-algorithm.html, (2014).
[29]洪晨芳, “GPU計算實驗:數值求解非線性多變數函數在特定區域內之全域極職問題,” 國立成功大學應用數學研究所, 碩士論文, (2012).
[30]K. Sastry, D. E. Goldberg and G. Kendall, “Search methodologies genetic
algorithms,” pp. 93-117, Jul. 2013.
[31]林文藝, “基因演算法實現智慧旅遊行程規劃,” 國立東華大學資訊工程研究所, 碩士論文, (2017).
[32]許博傑, “實數編碼與二位元編碼遺傳演算法之性能比較研究,” 國立臺灣科技大學機械工程研究所, 碩士論文, (2001).
[33]邱重融, “電子凸輪之運動曲線分析與應用研究,” 國立臺灣科技大學自動化及控制研究所, 碩士論文, (2017).
[34]王昱人, “飛剪機運動控制器開發,” 國立臺北科技大學機電整合研究所, 碩士論文, (2011).
[35]江志堅, “整合伺服馬達、SSCNET、及Ethernet以實現飛剪製程之遠端監控系統,” 國立交通大學電機學院電機與控制學程研究所, 碩士論文, (2014).
[36]郭建鋒, 王滿利, 王成碩, “基於TRIO運動控制器的瓦楞紙板橫切機控制系統設計,” 自動化技術與應用, 29卷8期, 5-12, (2010)
[37]台達電子股份有限公司, “DVP-20PM Application Manual (Programming),” Chapter 9, pp.42-44
[38]林政霆, “整合S曲線於速度控制之機械手臂路徑規劃研究,” 國立臺灣科技大學自動化及控制研究所, 碩士論文, (2016).
[39]T. C. Lu, S. L. Chen and C. Y. Yang, “Near time-optimal S-curve velocity planning for multiple line segments under axis constraints,” IEEE Trans.
Industrial Electronics., Early Access. Mar. 2018.

無法下載圖示 全文公開日期 2023/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE