簡易檢索 / 詳目顯示

研究生: 劉琦允
Chi-Yun Liu
論文名稱: 以電腦視覺結合微型元啟發式優化人工智慧搭載無人機即時檢測橋梁背板劣化維護成本推估系統
Real-time Underneath Bridge Deck Deterioration Detection and Maintenance Cost Estimation System with Computer Vision and Metaheuristic-Optimized AI Deployed on Unmanned Aerial Vehicle
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 曾惠斌
Hui-Ping Tserng
王維志
Wei-Chih Wang
鄭明淵
Min-Yuan Cheng
楊亦東
I-Tung Yang
周建成
Chien-Cheng Chou
周瑞生
Jui-Sheng Chou
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 267
中文關鍵詞: 人工智慧物聯網邊緣運算嵌入式系統電腦視覺深度學習微型元啟發式演算法微型人工智慧營建智慧管理關鍵基礎防災檢測維護成本推估即時輔助決策營建管理
外文關鍵詞: AI Internet of Things (AIoT), edge computing, embedded system, computer vision, deep learning, tiny metaheuristic optimization algorithm, tinyAI, intelligent construction management, disaster prevention and damage inspection for key infrastructures, maintenance cost estimation, decision making, construction management
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人工智慧應用需架設在完善的資訊基礎建設下,倚賴網路連線遠端超級電腦進行資料存取及運算;然而土木營建工程場域多處於逢山開路、遇水架橋的荒山野嶺,環境惡劣且通訊網路普遍架構不甚完善。嵌入式系統於營建場域離線執行邊緣運算人工智能分析,實為土木工程產業重要發展方向之ㄧ。然而,嵌入式系統透過感測器接收的實際資訊仍需經影像數據萃取處理及快速的人工智能分析,方得以衍生即時預測模式與應用。緣此,本研究應用貝氏優化演算法及創新提出一名為「媽祖朝聖行走最佳化(Pilgrimage Walk Optimization, PWO)」的元啟發式優化演算法,進階優化監督式及非監督式人工智慧模型自動化識別橋梁劣化的預測精確性。媽祖朝聖行走最佳化演算法靈感啟發於臺灣獨特的媽祖遶境民間習俗,其拓樸探索行徑模擬虔誠信徒之步履,隨媽祖鑾轎而行,歷經擲筊、遶境、駐駕、鑽轎腳、搶轎及安座等民俗信仰活動。為適用人工智慧系統單晶片(AI SoC)的運算效能,接續改良PWO演算法的拓樸機制,提出媽祖朝聖行走最佳化-輕量版(PWO-Lite)演算法,將其優化微型深度學習模型(tinyAI),結合邊緣運算開發即時檢測橋梁劣化維護成本推估系統,內嵌於嵌入式系統並搭載於無人飛行載具。研究開發的人工智慧無人飛行載具可輔助傳統人工作業、降低勞工現地巡檢危害風險,並有效提升橋梁劣化檢測品質。同時,擷取的劣化圖像資訊將轉化為工程維修數據,配合維修策略呈現視覺化統計圖表,供該領域專家、工程師作為維護工程成本推估輔助決策依據,並為橋梁管理單位或施工廠商日後橋梁檢修之參考。


    The application of artificial intelligence (AI) requires the presence of comprehensive information infrastructures and relies on Internet connection to remote supercomputers for data access and computation. However, civil construction sites are typically located off the beaten track and in locations challenging to access. Such environments are usually unfavorable and have inadequate telecommunication network infrastructures. Therefore, embedded systems capable of performing edge computing and AI analyses offline at construction sites are a major focus of development for the civil engineering industry. Nevertheless, knowledge gap and discrepancy exist between sensor data received by embedded systems and information that civil engineering businesses wish to obtain. Accordingly, the received data must be processed through image data extraction for quick AI analyses, in turn facilitating real-time prediction models and applications. Hence, this research leverages the bayesian optimization algorithm and proposes an innovative metaheuristic optimization algorithm named "Pilgrimage Walk Optimization (PWO)" to enhance the predictive accuracy of both supervised and unsupervised AI models for automated detection of bridge deterioration. The inspiration behind the PWO algorithm is rooted in the distinctive Taiwanese folk tradition of the Matsu pilgrimage, which replicates the footsteps of devoted worshippers accompanying the Matsu palanquin and engaging in various folk religious practices, including divination block casting, pilgrimage, leisure ceremonies, crawling beneath the palanquin, palanquin robbing, and the return palanquin ceremony. To align with the computational efficiency of the AI System-on-Chip (SoC), a lightweight topology mechanism is proposed following improvements to the PWO algorithm. The streamlined version of PWO, named the PWO-Lite algorithm, is employed to fine-tune a tiny deep learning (DL) model. The fine-tuned DL model is subsequently integrated with edge computing for real-time detection of bridge deterioration and maintenance cost estimation. Following this integration, the model is embedded into a system and deployed on unmanned aerial vehicles (UAV). The AI UAV developed in this study can assist in traditional manual operations, mitigating on-site inspection risks for workers while significantly improving the quality of bridge deterioration detection. Simultaneously, the collected deterioration image data will be converted into engineering maintenance data. This data, when combined with maintenance strategies, will be visualized in statistical charts. These charts serve as decision support tools for experts and engineers in the field, facilitating the estimation of maintenance costs. Furthermore, they offer reference information to bridge management agencies and construction companies for future bridge inspections and repairs.

    摘要 i ABSTRACT iii ACKNOWLEDGEMENTS v TABLE OF CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xiii CHAPTER 1: INTRODUCTION 1 1.1 Research Background and Motivations 1 1.2 Research Objectives 2 1.3 Dissertation Organization 4 CHAPTER 2: LITERATURE REVIEW 7 2.1 Metaheuristic Optimization Algorithms 7 2.2 Deep Learning for Bridge Degradation Detection 10 2.3 Fine-Tuning Hyperparameters in Artificial Intelligence Models 12 2.4 Applying Deep Learning with Object Tracking Algorithms 13 2.5 AI-Embedded Systems and Edge Computing in the Construction Management 15 CHAPTER 3: METHODOLOGY 19 3.1 Supervised Deep Learning Models and Estimation of Distribution Algorithm 19 3.1.1 YOLACT 19 3.1.2 Mask R-CNN 19 3.1.3 CenterMask 20 3.1.4 Estimation of Distribution Algorithm: Bayesian Optimization Algorithm (BOA) 20 3.2 Unsupervised Machine Learning Model: K-means 21 3.3 Supervised Tiny Deep Learning Model and Multi-Object-Tracking Algorithm 22 3.3.1 Tiny Deep Learning Model: YOLOv7-tiny 22 3.3.2 Multi-Object-Tracking Algorithm: DeepSORT 22 3.4 Model Performance Evaluation Metrics 24 CHAPTER 4: PILGRIMAGE WALK OPTIMIZATION (PWO) AND PWO-LITE ALGORITHMS 27 4.1 Introduction to the Matsu Pilgrimage 27 4.2 Developing Metaheuristic Optimization Algorithm: PWO Algorithm 29 4.2.1 Population Initialization: Divination-Block Casting 32 4.2.2 Exploration and Exploitation: Pilgrimage Phase 33 4.2.2.1 Matsu Pilgrimage Movement 33 4.2.2.2 Matsu Random Movement 35 4.2.3 Exploitation: Bobee Phase 35 4.2.3.1 Leisure Ceremony 35 4.2.3.2 Crawling Beneath the Palanquin 37 4.2.3.3 Palanquin Robbing 38 4.2.4 Time-Governing Mechanism 39 4.2.5 Boundary Constraints 39 4.2.6 Optimal Solution Acquisition: Iterative Search and Return Ceremony 40 4.2.7 Validation of the PWO Algorithm 40 4.2.7.1 Fifty Common Benchmark Functions 41 4.2.7.2 Parameter Settings 46 4.2.7.3 Performance and Convergence Comparison 47 4.3 Developing Metaheuristic Optimization Algorithm: PWO-Lite Algorithm 60 4.3.1 Algorithm Lightweight Design Strategy 60 4.3.2 Validation of the PWO-Lite Algorithm 62 4.3.2.1 Six Representative Mathematical Benchmark Functions 62 4.3.2.2 Parameter Settings 62 4.3.2.3 Performance and Convergence Comparison 62 CHAPTER 5: HYBRIDIZATION OF ARTIFICIAL INTELLIGENCE MODELS WITH OPTIMIZATION ALGORITHMS 69 5.1 BOA-Mask R-CNN 69 5.2 PWO-K-means 70 5.3 PWO-Lite-YOLOv7-tiny 71 CHAPTER 6: APPLICATION OF HYBRID ARTIFICIAL INTELLIGENCE MODELS IN BRIDGE INSPECTIONS 73 6.1 Supervised Image Segmentation for Bridge Deterioration Identification 73 6.1.1 Bridge Degradation Statistics 73 6.1.2 Experimental Design for Field Data Collection 76 6.1.2.1 Preliminary Bridge Survey 76 6.1.2.2 Bridge Inspection 76 6.1.3 Creation of Datasets 77 6.1.3.1 Image Collection for Bridge Deterioration 77 6.1.3.2 Pre-Processing of Datasets 78 6.1.4 Construction and Validation of Instance Segmentation Model 80 6.1.4.1 Predictions Using Instance Segmentation 80 6.1.4.2 Results with Augmentation 82 6.1.5 Optimizing Hyperparameters of the Instance Segmentation Model 83 6.1.5.1 Predictions with the Hybrid Instance Segmentation Model 83 6.1.5.2 Relevance and Correlation Analysis of Hyperparameters 88 6.2 Unsupervised Image Segmentation for Bridge Deterioration Identification 90 6.2.1 Image Data Collection for Bridge Deterioration 90 6.2.2 Comparing the Performance of Unsupervised Image Segmentation Models 91 6.3 Supervised Object Detection for Bridge Deterioration Identification 99 6.3.1 Data Collection and Preprocessing of Dataset 99 6.3.2 Predictive Performance of the YOLOv7-tiny Model 103 6.3.3 Predictive Performance of the PWO-Lite-YOLOv7-tiny Model 104 CHAPTER 7: DEVELOPING AN EDGE COMPUTING SYSTEM FOR REAL-TIME DETERIORATION DETECTION AND MAINTENANCE COST ESTIMATION 109 7.1 Real-Time Bridge Deterioration Detection and Quantity Estimation 109 7.2 Establishing an AI-Embedded Cost Maintenance System 114 CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 119 8.1 Reviewing and Reaffirming Research Purposes 119 8.2 Research Contributions 119 8.3 Research Limitations and Future Directions 123 REFERENCES 125 APPENDIX A: HARDWARE AND SOFTWARE CONFIGURATION FOR MODEL DEVELOPMENT 137 A.1 Hardware and Software Configuration 137 A.2 Model Development Environment Deployments 137 APPENDIX B: CODING SAMPLES 145 B.1 PWO Algorithm 145 B.2 PWO-Lite Algorithm 165 B.3 Supervised Image Segmentation using BOA-Mask R-CNN 172 B.4 Unsupervised Image Segmentation using PWO-K-means 176 B.5 Supervised Object Detection with PWO-Lite-YOLOv7-tiny 181 B.6 Accelerating Model Inference using TensorRT 197 B.7 AI-Embedded Edge Computing Platform 201 APPENDIX C: TUTORIALS 215 C.1 PWO Tutorial: Benchmark Functions 215 C.2 PWO-Lite Tutorial: Benchmark Functions 216 C.3 BOA-Mask R-CNN Tutorial: Supervised Image Segmentation for Bridge Deterioration Identification 217 C.4 PWO-K-means Tutorial: Unsupervised Image Segmentation for Bridge Deterioration Identification 219 C.5 PWO-Lite-YOLOv7-tiny Tutorial: Supervised Object Detection for Bridge Deterioration Identification 220 C.6 Tutorial: Using TensorRT for Accelerated Deep Learning Inference 221 C.7 AI-Embedded Cost Maintenance System Operation Tutorial 225 APPENDIX D: DETERIORATION DATASETS 229 D.1 Composite Bridge Deterioration Datasets 229 D.2 Concrete Bridge Deterioration Datasets 254 APPENDIX E: REAL-TIME DETECTION RESULTS 257 E.1 Data Flow of Real-Time Deterioration Detection. 257 E.2 Table of Detected Deterioration Ranges and Actual Measurements 266

    [1] G. Pianigiani, Poor Maintenance and Construction Flaws Are Cited in Italy Bridge Collapse, New York Times (2020), https://www.nytimes.com/2020/12/22/world/europe/genoa-bridge-collapse.html.
    [2] TTSB, Collapse of Nanfang'ao Bridge, Taiwan Transportation Safety Board, Ministry of Transportation and Communications (2020), https://www.ttsb.gov.tw/media/4448/ttsb-hor-20-11-001-2.pdf.
    [3] A.M. Zhu, Z.Q. Zhang, W. Pan, Crane-lift path planning for high-rise modular integrated construction through metaheuristic optimization and virtual prototyping, Automation in Construction 141 (2022), pp.21 104434, https://doi.org/10.1016/j.autcon.2022.104434.
    [4] A. Lopez, C.J. Ogayar, J.M. Jurado, F.R. Feito, Metaheuristics for the optimization of Terrestrial LiDAR set-up, Automation in Construction 146 (2023), pp.15 104675, https://doi.org/10.1016/j.autcon.2022.104675.
    [5] J.S. Chou, A. Molla, Recent advances in use of bio-inspired jellyfish search algorithm for solving optimization problems, Sci Rep 12 (1) (2022), pp.19157, http://dx.doi.org/10.1038/s41598-022-23121-z.
    [6] J.H. Holland, Adaptation in natural and artificial systems, MIT Press, 1992.
    [7] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942-1948, http://dx.doi.org/10.1109/ICNN.1995.488968.
    [8] S. Kemmoé Tchomté, M. Gourgand, Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems, International Journal of Production Economics 121 (1) (2009), pp.57-67, http://dx.doi.org/10.1016/j.ijpe.2008.03.015.
    [9] X.-S. Yang, S. Deb, M. Loomes, M. Karamanoglu, A framework for self-tuning optimization algorithm, Neural Computing and Applications 23 (2013), http://dx.doi.org/10.1007/s00521-013-1498-4.
    [10] D. Bertsimas, J. Tsitsiklis, Simulated Annealing, Statistical Science 8 (1993), https://doi.org/10.1214/ss/1177011077.
    [11] F. Glover, Tabu Search: A Tutorial, Interfaces 20 (1990), pp.74-94, https://doi.org/10.1287/inte.20.4.74.
    [12] N. Theodossiou, I. Kougias, Harmony Search Algorithm, 2012, pp. 117-140.
    [13] K. Mishra, S.K. Majhi, A novel improved hybrid optimization algorithm for efficient dynamic medical data scheduling in cloud-based systems for biomedical applications, Multimedia Tools and Applications, pp.35, https://doi.org/10.1007/s11042-023-14448-4.
    [14] J.S. Chou, D.N. Truong, Multiobjective optimization inspired by behavior of jellyfish for solving structural design problems, Chaos, Solitons & Fractals 135 (2020), pp.109738, https://doi.org/10.1016/j.chaos.2020.109738.
    [15] J.-S. Chou, N.-M. Nguyen, FBI Inspired Meta-Optimization, Applied Soft Computing 93 (2020), https://doi.org/10.1016/j.asoc.2020.106339.
    [16] D.-N. Truong, J.-S. Chou, Fuzzy adaptive forensic-based investigation algorithm for optimizing frequency-constrained structural dome design, Mathematics and Computers in Simulation 210 (2023), pp.473-531, https://doi.org/10.1016/j.matcom.2023.03.007.
    [17] J. Ryu, T. McFarland, C.T. Haas, E. Abdel-Rahman, Automatic clustering of proper working postures for phases of movement, Automation in Construction 138 (2022), pp.13 104223, https://doi.org/10.1016/j.autcon.2022.104223.
    [18] A.M. Ikotun, M.S. Almutari, A.E. Ezugwu, K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data Clustering Problems: Recent Advances and Future Directions, Applied Sciences-Basel 11 (23) (2021), pp.61 11246, https://doi.org/10.3390/app112311246.
    [19] H.-L. Minh, T. Sang-To, M. Abdel Wahab, T. Cuong-Le, A new metaheuristic optimization based on K-means clustering algorithm and its application to structural damage identification, Knowledge-Based Systems 251 (2022), pp.109189, https://doi.org/10.1016/j.knosys.2022.109189.
    [20] A. Umamageswari, N. Bharathiraja, D.S. Irene, A Novel Fuzzy C-Means based Chameleon Swarm Algorithm for Segmentation and Progressive Neural Architecture Search for Plant Disease Classification, ICT Express (2021), https://doi.org/10.1016/j.icte.2021.08.019.
    [21] D.-N. Truong, J.-S. Chou, Fuzzy adaptive jellyfish search-optimized stacking machine learning for engineering planning and design, Automation in Construction 143 (2022), pp.104579, https://doi.org/10.1016/j.autcon.2022.104579.
    [22] M. Gen, R. Cheng, Genetic algorithms and engineering optimization, John Wiley & Sons, 2000.
    [23] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization 11 (4) (1997), pp.341-359, https://doi.org/10.1023/A:1008202821328.
    [24] X.-S. Yang, Flower pollination algorithm for global optimization, International conference on unconventional computing and natural computation, Springer, 2012, pp. 240-249, https://doi.org/10.1007/978-3-642-32894-7_27.
    [25] H. Abedinpourshotorban, S. Mariyam Shamsuddin, Z. Beheshti, D.N.A. Jawawi, Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm, Swarm and Evolutionary Computation 26 (2016), pp.8-22, https://doi.org/10.1016/j.swevo.2015.07.002.
    [26] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems, Computers & Structures 110-111 (2012), pp.151-166, https://doi.org/10.1016/j.compstruc.2012.07.010.
    [27] M.-Y. Cheng, D. Prayogo, Symbiotic organisms search: a new metaheuristic optimization algorithm, Computers & Structures 139 (2014), pp.98-112, https://doi.org/10.1016/j.compstruc.2014.03.007.
    [28] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: A Gravitational Search Algorithm, Information Sciences 179 (13) (2009), pp.2232-2248, https://doi.org/10.1016/j.ins.2009.03.004.
    [29] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, Journal of global optimization 39 (3) (2007), pp.459-471, https://doi.org/10.1007/s10898-007-9149-x.
    [30] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE computational intelligence magazine 1 (4) (2006), pp.28-39, https://doi.org/10.1109/MCI.2006.329691.
    [31] X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation 2 (2) (2010), pp.78-84, https://doi.org/10.48550/arXiv.1003.1409.
    [32] M. Azizi, S. Talatahari, A.H. Gandomi, Fire Hawk Optimizer: a novel metaheuristic algorithm, Artificial Intelligence Review 56 (1) (2023), pp.287-363, https://doi.org/10.1007/s10462-022-10173-w.
    [33] B.K. Sahu, S. Pati, P.K. Mohanty, S. Panda, Teaching–learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system, Applied Soft Computing 27 (2015), pp.240-249, https://doi.org/10.1016/j.asoc.2014.11.027.
    [34] Z.W. Geem, J.H. Kim, G.V. Loganathan, A New Heuristic Optimization Algorithm: Harmony Search, Simulation 76 (2) (2001), pp.60-68, https://doi.org/10.1177/003754970107600201.
    [35] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1) (1997), pp.67-82, https://doi.org/10.1109/4235.585893.
    [36] A. Nettis, V. Massimi, R. Nutricato, D.O. Nitti, S. Samarelli, G. Uva, Satellite-based interferometry for monitoring structural deformations of bridge portfolios, Automation in Construction 147 (2023), pp.19 104707, https://doi.org/10.1016/j.autcon.2022.104707.
    [37] S. Hou, D. Jiao, B. Dong, H. Wang, G. Wu, Underwater inspection of bridge substructures using sonar and deep convolutional network, Advanced Engineering Informatics 52 (2022), 101545, https://doi.org/10.1016/j.aei.2022.101545.
    [38] S.H. Hsu, T.W. Chang, C.M. Chang, Impacts of label quality on performance of steel fatigue crack recognition using deep learning-based image segmentation, Smart Structures and Systems 29 (1) (2022), pp.207-220, https://doi.org/10.12989/sss.2022.29.1.207.
    [39] J. Huyan, T. Ma, W. Li, H.D. Yang, Z.C. Xu, Pixelwise asphalt concrete pavement crack detection via deep learning-based semantic segmentation method, Structural Control & Health Monitoring 29 (8) (2022), e2974, https://doi.org/10.1002/stc.2974.
    [40] C. Xiang, W. Wang, L. Deng, P. Shi, X. Kong, Crack detection algorithm for concrete structures based on super-resolution reconstruction and segmentation network, Automation in Construction 140 (2022), 104346, https://doi.org/10.1016/j.autcon.2022.104346.
    [41] K. Jang, H. Jung, Y.-K. An, Automated bridge crack evaluation through deep super resolution network-based hybrid image matching, Automation in Construction 137 (2022), 104229, https://doi.org/10.1016/j.autcon.2022.104229.
    [42] T. Wu, G. Liu, S. Fu, F. Xing, Recent Progress of Fiber-Optic Sensors for the Structural Health Monitoring of Civil Infrastructure, Sensors 20 (16) (2020), 4517, https://doi.org/10.3390/s20164517.
    [43] M.R. Azim, M. Gül, Damage detection of steel girder railway bridges utilizing operational vibration response, Structural Control and Health Monitoring 26 (11) (2019), e2447, https://doi.org/10.1002/stc.2447.
    [44] H. Shirahata, S. Hirayama, S. Ono, Y. Yamase, Detection of crack in painted flange gusset welded joint by ultrasonic test, Welding in the World 65 (11) (2021), pp.2147-2156, https://doi.org/10.1007/s40194-021-01160-w.
    [45] B.T. Svendsen, G.T. Frøseth, O. Øiseth, A. Rønnquist, A data-based structural health monitoring approach for damage detection in steel bridges using experimental data, Journal of Civil Structural Health Monitoring 12 (1) (2022), pp.101-115, https://doi.org/10.1007/s13349-021-00530-8.
    [46] J.Y. Fu, H.Y. Wang, R.S. Na, A. Jisaihan, Z.X. Wang, Y. Ohno, Recent advancements in digital health management using multi-modal signal monitoring, Mathematical Biosciences and Engineering 20 (3) (2023), pp.5194-5222, https://doi.org/10.3934/mbe.2023241.
    [47] A.J. Heller, D. Kotoučová, Úřady: lávka nebyla v havarijním stavu, Praha dává do oprav mostů stamiliony, iDNES.cz, 2017.
    [48] J. Hwang, J. Kim, S. Chi, J. Seo, Development of training image database using web crawling for vision-based site monitoring, Automation in Construction 135 (2022), pp.104141, https://doi.org/10.1016/j.autcon.2022.104141.
    [49] H. Son, N. Hwang, C. Kim, C. Kim, Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems, Automation in Construction 42 (2014), pp.13-24, https://doi.org/10.1016/j.autcon.2014.02.016.
    [50] R.G. Lins, S.N. Givigi, A.D.M. Freitas, A. Beaulieu, Autonomous Robot System for Inspection of Defects in Civil Infrastructures, IEEE Systems Journal 12 (2) (2018), pp.1414-1422, https://doi.org/10.1109/JSYST.2016.2611244.
    [51] Y. Fujita, K. Shimada, M. Ichihara, Y. Hamamoto, A method based on machine learning using hand-crafted features for crack detection from asphalt pavement surface images, Thirteenth International Conference on Quality Control by Artificial Vision 2017, Vol. 10338, International Society for Optics and Photonics, 2017, p. 103380I, https://doi.org/10.1117/12.2264075.
    [52] S.-P. Kao, Y.-C. Chang, F.-L. Wang, Combining the YOLOv4 Deep Learning Model with UAV Imagery Processing Technology in the Extraction and Quantization of Cracks in Bridges, Sensors 23 (5) (2023), pp.2572, https://doi.org/doi:10.3390/s23052572.
    [53] F. Du, S. Jiao, K. Chu, Application Research of Bridge Damage Detection Based on the Improved Lightweight Convolutional Neural Network Model, Applied Sciences 12 (12) (2022), pp.6225, https://doi.org/10.3390/app12126225.
    [54] D.Y. Wang, M.X. Zhang, D.J. Sheng, W.M. Chen, Bolt Positioning Detection Based on Improved YOLOv5 for Bridge Structural Health Monitoring, Sensors 23 (1) (2023), pp.13 396, https://doi.org/10.3390/s23010396.
    [55] S. Teng, Z.C. Liu, X.D. Li, Improved YOLOv3-Based Bridge Surface Defect Detection by Combining High- and Low-Resolution Feature Images, Buildings 12 (8) (2022), pp.18 1225, https://doi.org/10.3390/buildings12081225.
    [56] J. Zhang, S.R. Qian, C. Tan, Automated bridge crack detection method based on lightweight vision models, Complex & Intelligent Systems, pp.14, https://doi.org/10.1007/s40747-022-00876-6.
    [57] J.-S. Chou, N.-M. Nguyen, Scour depth prediction at bridge piers using metaheuristics-optimized stacking system, Automation in Construction 140 (2022), 104297, https://doi.org/10.1016/j.autcon.2022.104297.
    [58] J.-S. Chou, M.A. Karundeng, D.-N. Truong, M.-Y. Cheng, Identifying deflections of reinforced concrete beams under seismic loads by bio-inspired optimization of deep residual learning, Structural Control and Health Monitoring 29 (4) (2022), e2918, https://doi.org/10.1002/stc.2918.
    [59] H.J.P. Weerts, A.C. Mueller, J. Vanschoren, Importance of Tuning Hyperparameters of Machine Learning Algorithms, arXiv, arXiv.2007.07588 ( ) (2020), https://doi.org/10.48550/ARXIV.2007.07588.
    [60] S. Povari, S. Alam, S. Somannagari, L. Nakka, S. Chenna, Oxidative Dehydrogenation of Ethane with CO2 over the Fe-Co/Al2O3 Catalyst: Experimental Data Assisted AI Models for Prediction of Ethylene Yield, Industrial & Engineering Chemistry Research, pp.10, https://doi.org/10.1021/acs.iecr.2c04002.
    [61] S. Sahoo, A. Pare, S. Mishra, S. Soren, S.K. Biswal, Prediction of Sinter Properties Using a Hyper-Parameter-Tuned Artificial Neural Network, Acs Omega, pp.8, https://doi.org/10.1021/acsomega.2c05980.
    [62] Z.A. Sheikh, Y. Singh, S. Tanwar, R. Sharma, F.E. Turcanu, M.S. Raboaca, EISM-CPS: An Enhanced Intelligent Security Methodology for Cyber-Physical Systems through Hyper-Parameter Optimization, Mathematics 11 (1) (2023), pp.16 189, https://doi.org/10.3390/math11010189.
    [63] D.J. Kalita, V.P. Singh, V. Kumar, A novel adaptive optimization framework for SVM hyper-parameters tuning in non-stationary environment: A case study on intrusion detection system, Expert Systems with Applications 213 (2023), pp.21 119189, https://doi.org/10.1016/j.eswa.2022.119189.
    [64] B. Rajita, P. Tarigopula, P. Ramineni, A. Sharma, S. Panda, Application of Evolutionary Algorithms in Social Networks: A Comparative Machine Learning Perspective, New Generation Computing, pp.44, https://doi.org/10.1007/s00354-023-00215-4.
    [65] Y. Xia, C. Liu, Y. Li, N. Liu, A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring, Expert Systems with Applications 78 (2017), pp.225-241, https://doi.org/10.1016/j.eswa.2017.02.017.
    [66] F. Seifi, M.J. Azizi, S.T.A. Niaki, A data-driven robust optimization algorithm for black-box cases: An application to hyper-parameter optimization of machine learning algorithms, Computers & Industrial Engineering 160 (2021), 107581, https://doi.org/10.1016/j.cie.2021.107581.
    [67] R. Chandra, A. Tiwari, Distributed Bayesian optimisation framework for deep neuroevolution, Neurocomputing 470 (2022), pp.51-65, https://doi.org/10.1016/j.neucom.2021.10.045.
    [68] T.A. Lai, N.T. Nguyen, Q.T. Bui, Hyper-parameter optimization of gradient boosters for flood susceptibility analysis, Transactions in Gis 27 (1) (2023), pp.224-238, https://doi.org/10.1111/tgis.13023.
    [69] C. Yang, F. Qiu, F. Xiao, S.Y. Chen, Y.F. Fang, CBM Gas Content Prediction Model Based on the Ensemble Tree Algorithm with Bayesian Hyper-Parameter Optimization Method: A Case Study of Zhengzhuang Block, Southern Qinshui Basin, North China, Processes 11 (2) (2023), pp.18 527, https://doi.org/10.3390/pr11020527.
    [70] A. Karaman, D. Karaboga, I. Pacal, B. Akay, A. Basturk, U. Nalbantoglu, S. Coskun, O. Sahin, Hyper-parameter optimization of deep learning architectures using artificial bee colony (ABC) algorithm for high performance real-time automatic colorectal cancer (CRC) polyp detection, Applied Intelligence, pp.18, https://doi.org/10.1007/s10489-022-04299-1.
    [71] X. Xiao, M. Yan, S. Basodi, C. Ji, Y. Pan, Efficient Hyperparameter Optimization in Deep Learning Using a Variable Length Genetic Algorithm, arXiv (2020), https://doi.org/10.48550/ARXIV.2006.12703.
    [72] D. Kim, K. Kwon, K. Pham, J.Y. Oh, H. Choi, Surface settlement prediction for urban tunneling using machine learning algorithms with Bayesian optimization, Automation in Construction 140 (2022), pp.12 104331, https://doi.org/10.1016/j.autcon.2022.104331.
    [73] J.X. Qu, R.W. Liu, Y. Guo, Y.X. Lu, J.L. Su, P.Z. Li, Improving maritime traffic surveillance in inland waterways using the robust fusion of AIS and visual data, Ocean Engineering 275 (2023), pp.13 114198, https://doi.org/10.1016/j.oceaneng.2023.114198.
    [74] P.K. Zhou, Y.Z. Liu, Z.Y. Meng, PointSLOT: Real-Time Simultaneous Localization and Object Tracking for Dynamic Environment, Ieee Robotics and Automation Letters 8 (5) (2023), pp.2645-2652, https://doi.org/10.1109/lra.2023.3256919.
    [75] G. Guo, S.J. Zhao, 3D Multi-Object Tracking With Adaptive Cubature Kalman Filter for Autonomous Driving, Ieee Transactions on Intelligent Vehicles 8 (1) (2023), pp.512-519, https://doi.org/10.1109/tiv.2022.3158419.
    [76] C. Liu, H. Liu, L.J. Han, C.L. Xiang, New Integrated Multi-Algorithm Fusion Localization and Trajectory Tracking Framework of Autonomous Vehicles under Extreme Conditions with Non-Gaussian Noises, International Journal of Automotive Technology 24 (1) (2023), pp.259-272, https://doi.org/10.1007/s12239-023-0023-8.
    [77] C. Narmadha, T. Kavitha, R. Poonguzhali, V. Hamsadhwani, R. Walia, Monia, B. Jegajothi, Robust Deep Transfer Learning Based Object Detection and Tracking Approach, Intelligent Automation and Soft Computing 35 (3) (2023), pp.3613-3626, https://doi.org/10.32604/iasc.2023.029323.
    [78] J.P. Sun, D. Li, A cloud-oriented siamese network object tracking algorithm with attention network and adaptive loss function, Journal of Cloud Computing-Advances Systems and Applications 12 (1) (2023), pp.15 51, https://doi.org/10.1186/s13677-023-00431-9.
    [79] V. Premanand, D. Kumar, Moving Multi-Object Detection and Tracking Using MRNN and PS-KM Models, Computer Systems Science and Engineering 44 (2) (2023), pp.1807-1821, https://doi.org/10.32604/csse.2023.026742.
    [80] Z.L. Lin, Y.H. Shi, Z.S. Wang, B.H. Li, Y.H. Chen, Intelligent Seam Tracking of an Ultranarrow Gap During K-TIG Welding: A Hybrid CNN and Adaptive ROI Operation Algorithm, Ieee Transactions on Instrumentation and Measurement 72 (2023), pp.14 5001314, https://doi.org/10.1109/tim.2022.3230475.
    [81] H.Y. Liu, Y.C. Pei, Q.C. Bei, L.X. Deng, Improved DeepSORT Algorithm Based on Multi-Feature Fusion, Applied System Innovation 5 (3) (2022), pp.13 55, https://doi.org/10.3390/asi5030055.
    [82] Y.Q. Gai, W.Y. He, Z.L. Zhou, Ieee, Pedestrian Target Tracking Based On DeepSORT With YOLOv5, 2nd International Conference on Computer Engineering and Intelligent Control (ICCEIC), Ieee, Electr Network, 2021, pp. 1-5, https://doi.org/10.1109/icceic54227.2021.00008.
    [83] M.A. Bin Zuraimi, F.H.K. Zaman, Ieee, Vehicle Detection and Tracking using YOLO and DeepSORT, 11th IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), Ieee, Malaysia, 2021, pp. 23-29, https://doi.org/10.1109/iscaie51753.2021.9431784.
    [84] Y.H. Ge, S. Lin, Y.H. Zhang, Z.L. Li, H.T. Cheng, J. Dong, S.S. Shao, J. Zhang, X.Y. Qi, Z.D. Wu, Tracking and Counting of Tomato at Different Growth Period Using an Improving YOLO-Deepsort Network for Inspection Robot, Machines 10 (6) (2022), pp.20 489, https://doi.org/10.3390/machines10060489.
    [85] C. Chen, B. Liu, S.H. Wan, P. Qiao, Q.Q. Pei, An Edge Traffic Flow Detection Scheme Based on Deep Learning in an Intelligent Transportation System, Ieee Transactions on Intelligent Transportation Systems 22 (3) (2021), pp.1840-1852, https://doi.org/10.1109/tits.2020.3025687.
    [86] T.H. Lin, Y.H. Huang, A. Putranto, Intelligent question and answer system for building information modeling and artificial intelligence of things based on the bidirectional encoder representations from transformers model, Automation in Construction 142 (2022), pp.12 104483, https://doi.org/10.1016/j.autcon.2022.104483.
    [87] D.F. Li, J.S. Lai, R.J. Wang, X. Li, P. Vijayakumar, W. Alhalabi, B.B. Gupta, Ubiquitous intelligent federated learning privacy-preserving scheme under edge computing, Future Generation Computer Systems-the International Journal of Escience 144 (2023), pp.205-218, https://doi.org/10.1016/j.future.2023.03.010.
    [88] S. Mittal, A Survey on optimized implementation of deep learning models on the NVIDIA Jetson platform, Journal of Systems Architecture 97 (2019), pp.428-442, https://doi.org/10.1016/j.sysarc.2019.01.011.
    [89] H. Bura, N. Lin, N. Kumar, S. Malekar, S. Nagaraj, K. Liu, An Edge Based Smart Parking Solution Using Camera Networks and Deep Learning, 2018 IEEE International Conference on Cognitive Computing (ICCC), 2018, pp. 17-24, https://doi.org/10.1109/ICCC.2018.00010.
    [90] U.K. Sreekumar, R. Devaraj, Q. Li, K. Liu, TPCAM: Real-time traffic pattern collection and analysis model based on deep learning, 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1-4, https://doi.org/10.1109/UIC-ATC.2017.8397674.
    [91] H. Xu, M.T. Guo, N. Nedjah, J.D. Zhang, P. Li, Vehicle and Pedestrian Detection Algorithm Based on Lightweight YOLOv3-Promote and Semi-Precision Acceleration, Ieee Transactions on Intelligent Transportation Systems 23 (10) (2022), pp.19760-19771, https://doi.org/10.1109/tits.2021.3137253.
    [92] S. Mohan, O. Shoghli, A. Burde, H. Tabkhi, Low-Power Drone-Mountable Real-Time Artificial Intelligence Framework for Road Asset Classification, Transportation Research Record 2675 (1) (2021), pp.39-48, https://doi.org/10.1177/0361198120965170.
    [93] D.a.Z. Bolya, Chong and Xiao, Fanyi and Lee, Yong Jae, YOLACT: Real-time Instance Segmentation, arXiv, arXiv:1904.02689 (2019), https://doi.org/10.48550/ARXIV.1904.02689.
    [94] J. Cheng, W. Wu, Y. Yang, J. Zhang, YOLACT in Micro-Assembly Robot System, 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence, Association for Computing Machinery, Sanya, China, 2021, pp. 1-5, https://doi.org/10.1145/3508546.3508570.
    [95] G.L. Wang, B.J. Zhang, H.L. Wang, L. Xu, Y. Li, Z.X. Liu, Detection of the drivable area on high-speed road via YOLACT, Signal Image and Video Processing 16 (6) (2022), pp.1623-1630, https://doi.org/10.1007/s11760-021-02117-8.
    [96] Y.J. Li, Q.C. Feng, C. Liu, Z.C. Xiong, Y.H. Sun, F. Xie, T. Li, C.J. Zhao, MTA-YOLACT: Multitask-aware network on fruit bunch identification for cherry tomato robotic harvesting, European Journal of Agronomy 146 (2023), pp.12 126812, https://doi.org/10.1016/j.eja.2023.126812.
    [97] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 2980-2988, https://doi.org/10.1109/ICCV.2017.322.
    [98] R. Girshick, Fast R-CNN, 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 1440-1448, https://doi.org/10.1109/ICCV.2015.169.
    [99] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, https://doi.org/10.1109/CVPR.2016.90.
    [100] B.K. Gharehchobogh, Z.D. Kuzekanani, J. Sobhi, A.M. Khiavi, Flotation froth image segmentation using Mask R-CNN, Minerals Engineering 192 (2023), pp.9 107959, https://doi.org/10.1016/j.mineng.2022.107959.
    [101] M.E. Sahin, H. Ulutas, E. Yuce, M.F. Erkoc, Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images, Neural Computing & Applications, pp.15, https://doi.org/10.1007/s00521-023-08450-y.
    [102] Y. Lee, J. Park, CenterMask: Real-Time Anchor-Free Instance Segmentation, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp.13903-13912, https://doi.org/10.1109/cvpr42600.2020.01392.
    [103] V.H. Le, Deep learning-based for human segmentation and tracking, 3D human pose estimation and action recognition on monocular video of MADS dataset, Multimedia Tools and Applications, pp.48, https://doi.org/10.1007/s11042-022-13921-w.
    [104] Z.M. Xuan, J.W. Ding, J. Mao, Intelligent Identification Method of Insulator Defects Based on CenterMask, Ieee Access 10 (2022), pp.59772-59781, https://doi.org/10.1109/access.2022.3179975.
    [105] T. Wu, Y. Hu, L. Peng, R.N. Chen, Improved Anchor-Free Instance Segmentation for Building Extraction from High-Resolution Remote Sensing Images, Remote Sensing 12 (18) (2020), pp.15 2910, https://doi.org/10.3390/rs12182910.
    [106] B. Carrillo-Perez, S. Barnes, M. Stephan, Ship Segmentation and Georeferencing from Static Oblique View Images, Sensors 22 (7) (2022), pp.19 2713, https://doi.org/10.3390/s22072713.
    [107] E. Yang, Q. Yang, J. Li, H. Zhang, H. Di, Y. Qiu, Establishment of icing prediction model of asphalt pavement based on support vector regression algorithm and Bayesian optimization, Construction and Building Materials 351 (2022), 128955, https://doi.org/10.1016/j.conbuildmat.2022.128955.
    [108] Y.H. Fang, M. Niu, P. Cheung, L.Z. Lin, Extrinsic Bayesian Optimization on Manifolds, Algorithms 16 (2) (2023), pp.12 117, https://doi.org/10.3390/a16020117.
    [109] J. Lim, M. Choi, S. Lee, A Bayesian Optimization Algorithm for the Optimization of Mooring System Design Using Time-Domain Analysis, Journal of Marine Science and Engineering 11 (3) (2023), pp.14 507, https://doi.org/10.3390/jmse11030507.
    [110] M. Bayrak, S.I. Guler, Linkage Problem in Location Optimization of Dedicated Bus Lanes on a Network, Transportation Research Record, pp.15, https://doi.org/10.1177/03611981221148490.
    [111] A. Chakrabarty, C. Danielson, S.A. Bortoff, C.R. Laughman, Accelerating self-optimization control of refrigerant cycles with Bayesian optimization and adaptive moment estimation, Applied Thermal Engineering 197 (2021), 117335, https://doi.org/10.1016/j.applthermaleng.2021.117335.
    [112] C.-Y. Liu, J.-S. Chou, Bayesian-optimized deep learning model to segment deterioration patterns underneath bridge decks photographed by unmanned aerial vehicle, Automation in Construction 146 (2023), pp.104666, https://doi.org/10.1016/j.autcon.2022.104666.
    [113] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), https://doi.org/10.1109/CVPR.2016.91.
    [114] J. Redmon, A. Farhadi, Yolov3: An incremental improvement, (2019), https://doi.org/10.48550/arXiv.1804.02767.
    [115] A. Bochkovskiy, C.Y. Wang, H.Y.M. Liao, YOLOv4: Optimal Speed and Accuracy of Object Detection, (2020), https://doi.org/10.48550/arXiv.2004.10934.
    [116] A.S. Glenn Jocher, Jirka Borovec, NanoCode012, Ayush Chaurasia, TaoXie, Liu Changyu, Abhiram V, Laughing, tkianai, yxNONG, Adam Hogan, lorenzomammana, AlexWang1900, Jan Hajek, Laurentiu Diaconu, Marc, Yonghye Kwon, oleg, wanghaoyang0106, Yann Defretin, Aditya Lohia, ml5ah, Ben Milanko, Benjamin Fineran, Daniel Khromov, Ding Yiwei, Doug, Durgesh, and Francisco Ingham., ultralytics/yolov5: v5.0 - YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations (2021), https://github.com/ultralytics/yolov5.
    [117] C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie, Y. Li, B. Zhang, Y. Liang, L. Zhou, X. Xu, X. Chu, X. Wei, X. Wei, YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications, arXiv (2022), https://doi.org/10.48550/arXiv.2209.02976.
    [118] C.-Y. Wang, A. Bochkovskiy, H.-y. Liao, YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 2022.
    [119] Y. Zhang, Y.P. Sun, Z. Wang, Y. Jiang, YOLOv7-RAR for Urban Vehicle Detection, Sensors 23 (4) (2023), pp.20 1801, https://doi.org/10.3390/s23041801.
    [120] L.L. Zhao, M.L. Zhu, MS-YOLOv7:YOLOv7 Based on Multi-Scale for Object Detection on UAV Aerial Photography, Drones 7 (3) (2023), pp.18 188, https://doi.org/10.3390/drones7030188.
    [121] Y.S. Qiu, Y.Y. Lu, Y.T. Wang, H.Y. Jiang, IDOD-YOLOV7: Image-Dehazing YOLOV7 for Object Detection in Low-Light Foggy Traffic Environments, Sensors 23 (3) (2023), pp.22 1347, https://doi.org/10.3390/s23031347.
    [122] K.Y. Liu, Q. Sun, D.M. Sun, L. Peng, M.D. Yang, N.Z. Wang, Underwater Target Detection Based on Improved YOLOv7, Journal of Marine Science and Engineering 11 (3) (2023), pp.21 677, https://doi.org/10.3390/jmse11030677.
    [123] I. Daramouskas, D. Meimetis, N. Patrinopoulou, V. Lappas, V. Kostopoulos, V. Kapoulas, Camera-Based Local and Global Target Detection, Tracking, and Localization Techniques for UAVs, Machines 11 (2) (2023), pp.27 315, https://doi.org/10.3390/machines11020315.
    [124] N. Wojke, A. Bewley, D. Paulus, Simple online and realtime tracking with a deep association metric, (2017), pp.3645-3649, https://doi.org/10.1109/ICIP.2017.8296962.
    [125] A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, Simple online and realtime tracking, 2016 IEEE International Conference on Image Processing (ICIP), 2016, pp. 3464-3468, https://doi.org/10.1109/ICIP.2016.7533003.
    [126] Y.Y. Liu, Y. Li, D.Z. Xu, Q.Y. Yang, W.B. Tao, Adaptive Kalman Filter with power transformation for online multi-object tracking, Multimedia Systems, pp.14, https://doi.org/10.1007/s00530-023-01052-7.
    [127] B.L. Wu, C.N. Liu, F.R. Jiang, J.Y. Li, Z.B. Yang, Dynamic identification and automatic counting of the number of passing fish species based on the improved DeepSORT algorithm, Frontiers in Environmental Science 11 (2023), pp.16 1059217, https://doi.org/10.3389/fenvs.2023.1059217.
    [128] Q. Jiang, H. Li, Silicon energy bulk material cargo ship detection and tracking method combining YOLOv5 and DeepSort, Energy Reports 9 (2023), pp.151-158, https://doi.org/10.1016/j.egyr.2023.01.112.
    [129] Y.Y. Cao, J. Chen, Z.C. Zhang, A sheep dynamic counting scheme based on the fusion between an improved-sparrow-search YOLOv5x-ECA model and few-shot deepsort algorithm, Computers and Electronics in Agriculture 206 (2023), pp.17 107696, https://doi.org/10.1016/j.compag.2023.107696.
    [130] J. Del Gaizo, J.S. Obeid, K.R. Catchpole, A.V. Alekseyenko, Red Flag/Blue Flag visualization of a common CNN for text classification, Jamia Open 6 (1) (2023), pp.7 ooac112, https://doi.org/10.1093/jamiaopen/ooac112.
    [131] M. Wang, Y. Zhao, P.-C. Liao, EEG-based work experience prediction using hazard recognition, Automation in Construction 136 (2022), pp.104151, https://doi.org/10.1016/j.autcon.2022.104151.
    [132] J. Mattiev, J. Sajovic, G. Drevensek, P. Rogelj, Assessment of Model Accuracy in Eyes Open and Closed EEG Data: Effect of Data Pre-Processing and Validation Methods, Bioengineering-Basel 10 (1) (2023), pp.21 42, https://doi.org/10.3390/bioengineering10010042.
    [133] T. Mathew, C.I. Johnpaul, B. Ajith, J.R. Kini, J. Rajan, A deep learning based classifier framework for automated nuclear atypia scoring of breast carcinoma, Engineering Applications of Artificial Intelligence 120 (2023), pp.14 105949, https://doi.org/10.1016/j.engappai.2023.105949.
    [134] L.L. Zhang, Y.X. Liu, L.L. Qu, J.N. Cai, J.P. Fang, A Spatial Cross-Scale Attention Network and Global Average Accuracy Loss for SAR Ship Detection, Remote Sensing 15 (2) (2023), pp.23 350, https://doi.org/10.3390/rs15020350.
    [135] J.M. Zhao, Q.S. Lian, Multi-centers SoftMax reciprocal average precision loss for deep metric learning, Neural Computing & Applications, pp.11, https://doi.org/10.1007/s00521-023-08334-1.
    [136] S.K. Valicharla, X. Li, J. Greenleaf, R. Turcotte, C. Hayes, Y.L. Park, Precision Detection and Assessment of Ash Death and Decline Caused by the Emerald Ash Borer Using Drones and Deep Learning, Plants-Basel 12 (4) (2023), pp.20 798, https://doi.org/10.3390/plants12040798.
    [137] Y. Zhang, The Local Promotion of Mazu: The Intersection of Lineage, Textual Representation, Confucian Values, and Temples in Late Imperial China, Religions 11 (3) (2020), pp.123, https://doi.org/10.3390/rel11030123.
    [138] J.-S. Chou, C.-Y. Liu, Pilgrimage walk optimization: Folk culture-inspired algorithm for identification of bridge deterioration, Automation in Construction 155 (2023), pp.105055, https://doi.org/10.1016/j.autcon.2023.105055.
    [139] R.M. May, Simple mathematical models with very complicated dynamics, Nature 261 (5560) (1976), pp.459-467, https://doi.org/10.1038/261459a0.
    [140] M. Pluhacek, A. Kazikova, A. Viktorin, T. Kadavy, R. Senkerik, Chaos in popular metaheuristic optimizers - a bibliographic analysis, Journal of Difference Equations and Applications, pp.16, https://doi.org/10.1080/10236198.2023.2203779.
    [141] Q.Q. He, H. Liu, G.Y. Ding, L.P. Tu, A modified Levy flight distribution for solving high-dimensional numerical optimization problems, Mathematics and Computers in Simulation 204 (2023), pp.376-400, https://doi.org/10.1016/j.matcom.2022.08.017.
    [142] S. Mirjalili, A. Lewis, The Whale Optimization Algorithm, Advances in Engineering Software 95 (2016), pp.51-67, https://doi.org/10.1016/j.advengsoft.2016.01.008.
    [143] D. Karaboga, B. Akay, A comparative study of artificial bee colony algorithm, Applied mathematics and computation 214 (1) (2009), pp.108-132, https://doi.org/10.1016/j.amc.2009.03.090.
    [144] E. Erdemir, Hybrid algorithm proposal for optimizing benchmarking problems: Salp swarm algorithm enhanced by arithmetic optimization algorithm, International Journal of Industrial Engineering Computations, pp.14, https://doi.org/10.5267/j.ijiec.2023.1.002.
    [145] W.H. Bangyal, K. Nisar, A.A.B. Ibrahim, M.R. Haque, J. Rodrigues, D.B. Rawat, Comparative Analysis of Low Discrepancy Sequence-Based Initialization Approaches Using Population-Based Algorithms for Solving the Global Optimization Problems, Applied Sciences-Basel 11 (16) (2021), pp.36 7591, https://doi.org/10.3390/app11167591.
    [146] L. Xu, W. Yan, J. Ji, The research of a novel WOG-YOLO algorithm for autonomous driving object detection, Scientific Reports 13 (1) (2023), pp.3699, https://doi.org/10.1038/s41598-023-30409-1.
    [147] Y.Y. Wang, Q.X. Jia, T.T. Deng, H.E. Ali, Artificial intelligence as an aid to predict the motion problem in sport, Earthquakes and Structures 24 (2) (2023), pp.111-126, https://doi.org/10.12989/eas.2023.24.2.111.
    [148] B.L. Lv, F. Liu, Y.L. Li, J.H. Nie, F.F. Gou, J. Wu, Artificial Intelligence-Aided Diagnosis Solution by Enhancing the Edge Features of Medical Images, Diagnostics 13 (6) (2023), pp.21 1063, https://doi.org/10.3390/diagnostics13061063.
    [149] H.Y. Wang, Z.M. Ye, D.J. Wang, H.L. Jiang, P.P. Liu, Synthetic Datasets for Rebar Instance Segmentation Using Mask R-CNN, Buildings 13 (3) (2023), pp.20 585, https://doi.org/10.3390/buildings13030585.
    [150] T. Kasinathan, S.R. Uyyala, Detection of fall armyworm (spodoptera frugiperda) in field crops based on mask R-CNN, Signal Image and Video Processing, pp.7, https://doi.org/10.1007/s11760-023-02485-3.
    [151] Y.G. Avdeev, K.L. Anfilov, Effect of dissolved oxygen on the electrode reactions of low-carbon steel in 1 M HCl containing butyndiol and propargyl alcohol, International Journal of Corrosion and Scale Inhibition 12 (1) (2023), pp.84-100, https://doi.org/10.17675/2305-6894-2023-12-1-5.
    [152] C.K. Chiu, K.N. Chi, Analysis of lifetime losses of low-rise reinforced concrete buildings attacked by corrosion and earthquakes using a novel method, Structure and Infrastructure Engineering 9 (12) (2013), pp.1225-1239, https://doi.org/10.1080/15732479.2012.681790.
    [153] Institute of Transportation (IOT), 2020 Annual Report of Atmospheric Corrosive Factors Data in Taiwan, IOT, Ministry of Transportation and Communications (MOTC), 2021.
    [154] Second Maintenance Office, 2019 General assessment report of pre-flood season bridge inspections and visual DER&U inspections of provincial highway cross-water bridges and viaducts under jurisdiction of this department, Directorate General of Highways, Ministry of Transportation and Communications (MOTC), 2019.
    [155] Second Maintenance Office, 2019 General assessment report of pre-flood season bridge inspections and visual DER&U inspections of provincial highway cross-water bridges under jurisdiction of Second Maintenance Office, Directorate General of Highways, Ministry of Transportation and Communications (MOTC), 2019.
    [156] K. Wada, labelme: Image Polygonal Annotation with Python, GitHub repository, GitHub, 2018.
    [157] Á. Casado-García, C. Domínguez, M. García-Domínguez, J. Heras, A. Inés, E. Mata, V. Pascual, CLoDSA: a tool for augmentation in classification, localization, detection, semantic segmentation and instance segmentation tasks, BMC Bioinformatics 20 (1) (2019), 323, https://doi.org/10.1186/s12859-019-2931-1.
    [158] L. Biewald, Experiment Tracking with Weights and Biases, 2020.
    [159] A. Sharma, S. Sehgal, Image segmentation using firefly algorithm, 2016 International Conference on Information Technology (InCITe) - The Next Generation IT Summit on the Theme - Internet of Things: Connect your Worlds, IEEE, Noida, India, 2016, pp. 99-102, https://doi.org/10.1109/INCITE.2016.7857598.
    [160] T. Tiwari, M. Saraswat, A new firefly algorithm-based superpixel clustering method for vehicle segmentation, Soft Computing (2022), https://doi.org/10.1007/s00500-022-07206-5.
    [161] C.-Y.a.B. Wang, Alexey and Liao, Hong-Yuan Mark, yolov7, (2022), https://github.com/WongKinYiu/yolov7.
    [162] H. Feng, G. Mu, S. Zhong, P. Zhang, T. Yuan, Benchmark Analysis of YOLO Performance on Edge Intelligence Devices, 2021 Cross Strait Radio Science and Wireless Technology Conference (CSRSWTC), 2021, pp. 319-321, https://doi.org/10.1109/CSRSWTC52801.2021.9631594.
    [163] H. Vanholder, Efficient Inference with TensorRT, Proc. of GPU Technology Conference 1 (2016), pp.2-2, https://on-demand.gputechconf.com/gtc-eu/2017/presentation/23425-han-vanholder-efficient-inference-with-tensorrt.pdf.
    [164] Y. Kardovskyi, S. Moon, Artificial intelligence quality inspection of steel bars installation by integrating mask R-CNN and stereo vision, Automation in Construction 130 (2021), pp.103850, https://doi.org/10.1016/j.autcon.2021.103850.
    [165] N.M. Tuan, Y.J. Kim, J.Y. Lee, S. Chin, Automatic Stereo Vision-Based Inspection System for Particle Shape Analysis of Coarse Aggregates, Journal of Computing in Civil Engineering 36 (2) (2022), pp.12 04021034, https://doi.org/10.1061/(ASCE)CP.1943-5487.0001005.
    [166] CyberLink, PowerDirector, (2023), https://tw.cyberlink.com/products/powerdirector-video-editing-software/overview_zh_TW.html?affid=2581_-1_419_PDR-B&mkwid=s&pcrid=495183724008&pkw=powerdirector&pmt=e&pdv=c&gclid=Cj0KCQjwocShBhCOARIsAFVYq0iG2bt52CkCi1-PvPPyGiVn_5W68bYYPeCI4pRG2VKvFo5dyVWj2GUaAqXiEALw_wcB.
    [167] E.Y. Public Construction Commission, Public works engineering technical database, (2023), https://pcces.pcc.gov.tw.

    無法下載圖示 全文公開日期 2026/01/12 (校內網路)
    全文公開日期 2026/01/12 (校外網路)
    全文公開日期 2026/01/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE