簡易檢索 / 詳目顯示

研究生: 呂彥德
Yen-Te Lu
論文名稱: 以紅外線攝影機實現輪式機器人室內導航之研究
IR Camera Technology for Navigation System of Wheeled Robot
指導教授: 吳忠霖
John-Ling Wu
口試委員: 莊華益
Hua-Yi Chuang
薛文証
Wen-Jeng Hsueh
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 輪式機器人紅外線攝影機室內定位超音波避障路徑規劃
外文關鍵詞: Wheeled Robot, IR Camera, Indoor Positioning, Ultrasonic Obstacle Avoidance, Path Planning
相關次數: 點閱:278下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前室內定位系統之研究大多以無線通訊技術做為探討,然而其定位精度皆為數十公分,故本論文以紅外線攝影與紅外線模組架構出基於紅外線技術之定位系統。
    本論文使用紅外線攝影機抓取紅外線LED之座標,透過座標轉換可得到輪式機器人所在位置,紅外線LED與RF通訊模組組成紅外線模組,藉由此模組可達成主動式紅外線定位與導航。此外,輪式機器人使用超音波測距模組進行未知障礙物之避障,當障礙物之座標為已知則透過路徑規劃的方式進行避障。電腦端與輪式機器人透過藍芽進行溝通,電腦端人機介面可顯示輪式機器人傳送的資訊並可以下命令給輪式機器人,達到即時監控之功能。
    在紅外線定位系統下,輪式機器人可執行定位與導航,其誤差可在5~10公分之內,比起無線通訊技術之定位誤差75~100公分高出許多。


    Most of the researches for indoor positioning system are based on wireless communication technology, unfortunately its accuracy is still dozens of centimeters difference. In this current research, we are able to design a positioning system that based on infrared technology by using both of IR camera and LED module.

    LED module is including IR LED and RF communication module as the source of infrared. The coordinate values of LED module are recorded by IR camera that attached on wheeled robot. Moreover, wheeled robot is equipped with ultrasonic module to avoid the unknown position obstacles, or make path planning to avoid obstacles when the positions are known. User can command and monitor the wheeled robot by UI-PC, and use Bluetooth for data transfer.

    Current result of this research described its high accuracy which has positioning error 5-10cm range, compared to wireless communication that has positioning error in 75-100cm range. This technique could propose as a new position system with simpler method and higher accuracy for on sight indoor environment.

    摘要 i Abstract ii 致 謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第1章 緒論 1 1.1 前言 1 1.2 相關文獻探討 3 1.3 研究目的 10 1.4 論文架構 11 第2章 輪式機器人架構 12 2.1 車體機構系統 12 2.2 電控系統 15 2.2.1 步進馬達與驅動電路 15 2.2.2 ARM9主控系統 22 2.2.3 無線藍芽通訊模組 29 2.2.4 無線操控搖桿模組 33 2.2.5 無線RF通訊模組 38 2.3 感測系統 43 2.3.1 紅外線攝影機模組 43 2.3.2 超音波感測器模組 47 第3章 紅外線攝影機室內定位導航系統 51 3.1 紅外線攝影機參數設定 51 3.2 紅外線攝影機介面電路與驅動韌體 54 3.3 室內座標系定義 57 3.4 紅外線攝影機之室內位置推算 61 3.5 紅外線攝影機之室內導航 64 3.5.1 向量法 64 3.5.2 軌跡法 66 3.5.3 即時運算法 67 第4章 遠端遙控系統 68 4.1 電腦端之無線藍芽系統導入 68 4.2 輪式機器人之無線藍芽系統導入 73 4.3 人機介面之設計 76 4.4 無線藍芽封包傳輸格式 88 4.5 人機介面之操作流程 91 第5章 超音波避障與路徑規劃 94 5.1 超音波感測器模組之作動與測距原理 94 5.1.1 超音波感測器之作動原理 94 5.1.2 超音波感測器之測距原理 97 5.2 超音波感測器障礙物偵測與避障 98 5.2.1 超音波感測器之障礙物偵測 98 5.2.2 超音波感測器之避障 101 5.3路徑規劃 102 第6章 實驗結果 106 6.1 導航實驗 106 6.1.1 向量法之導航實驗 106 6.1.2 軌跡法之導航實驗 109 6.1.3 即時運算法之導航實驗 110 6.1.4 三種導航方法之比較 111 6.2 超音波避障實驗 112 6.3 路徑規劃實驗 114 第7章 結論與未來工作 115 7.1 結論 115 7.2 未來展望 116 參考文獻 117

    [1] Sony Global - AIBO Global Link, Available: http://www.sony.net/Products/aibo/
    [2] iRobot Corporation, Available: http://www.irobot.com/
    [3] M. Hazas, J. Scott, and J. Krumm, "Location-Aware Computing Comes of Age, "IEEE Computer Society, Vol.37, pp. 95-97, 2004.
    [4] E. D. Kaplan, Understanding GPS: Principles and Applications, Artech House, 1996.
    [5] Diggelen, F. V., "Indoor GPS theory & implementation," Proceedings of IEEE
    Position, Location & Navigation Symposium, pp. 240-247, 2002.
    [6] Want, R., Hopper, A., Falcão,V. and Gibbons, J .1992, "The Active Badge
    Location System, " ACM Trans. Information Systems.pp.91-102.
    [7] 陳柏維,"Wiimote紅外線室內定位技術與運動控制應用於智慧建築之研究" 碩士論文,奈米科技暨微系統工程研究所,成功大學,2009。
    [8] A. Harter, A. Hopper, P. Steggles, et al., "The Anatomy of a Context-Aware
    application," Proceedings of the 5th annual ACM/IEEE international conference
    on Mobile computing and networking, pp.59-68, 1999.
    [9] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan, "The Cricket Location-Support System," Proceedings of 6th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 32-43, 2000.
    [10] 顧高至,"智慧型多功能自走車之研發",碩士論文,工程科學研究所,成
    功大學,2003。
    [11] E. Kruse and F. M. Wahl, "Camera-based observation of obstacle motions to
    derive statistical data for mobile robot motion planning," Proc. IEEE
    International Conference on Robotics and Automation, vol. 1, pp. 662-667, May, 1998.
    [12] S.K. Gehrig, and F.j. Stein, "Dead Reckoning and Cartography Using Stereo
    Vision for an Autonomous Car," IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1507-1512, 1999.
    [13] 李廣齊、莊閔智等人,"棋盤是自走車影像避障之路徑規劃",國立虎尾科
    技大學學報,第二十五卷第三期(民國95年九月),2006。
    [14] Jeffery HighTower, Chris Vakili, Caetano Borriello, and Roy Want, "Design and Calibration of the SpotON AD-Hoc Location Sensing System," UWCSE
    00-02-02 University of Washington, Department of Computer Science and Engineering, Seattle.
    [15] Ni, L. M., Y. Liu, Y. C. Lau and A. P. Patil, "LANDMARC : Indoor Location Sensing Using Active RFID, " Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, pp. 407-415, 2003.
    [16] P. Bahl, V. N. Padmanabhan, "RADAR : An In-building RF-based User
    Location and Tracking System," IEEE Computer and Communications Conference, vol. 2, pp.775-784, 2000.
    [17] Q. Yao, Fei-Yue Wang, Hui Gao, Kunfeng Wang, and Hongxia Zhao,"Location
    Estimation in ZigBee Network Based on Fingerprinting," Proc. IEEE International Conference on Vehicular Electronics and Safety, Dec 2007.
    [18] 張家豪,"主動是RFID結合超音波在定位與路徑規劃之研究",碩士論文,電機工程研究所,義守大學,2009。
    [19] 王志鵬,"藍芽基頻模組通訊協定的模擬與分析",碩士論文,電子工程所,逢甲大學,2003。
    [20] 賴耿陽,"超音波工學",復文書局,2005年04月
    [21] 唐新民,"超音波入門及應用",無線電雜誌社,1996年
    [22] T. Lozano-Perez and M. Wesley, "An algorithm for planning collision-free paths among polyhedral obstacles," Communications of the ACM, vol. 22, no.10, pp. 560-570, 1979.
    [23] Dijkstra’s演算法代碼, Available:http://zh.wikipedia.org/wiki/Dijkstra%E7%AE%97%E6%B3%95

    無法下載圖示 全文公開日期 2016/07/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE