簡易檢索 / 詳目顯示

研究生: 王宗緯
Tsung-wei Wang
論文名稱: 即時更新系統參數於負載變化雙輪機械人之研究
A Study of Immediate Updating System Parameters for Two-Wheeled Robot with Load Variation
指導教授: 邱士軒
Shih-hsuan Chiu
口試委員: 林其禹
Chyi-yeu Lin
鄧惟中
Wei-chung Teng
溫哲彥
Che-yen Wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 88
中文關鍵詞: 雙輪機械人極點擺放控制器參數估測狀態變數方程式
外文關鍵詞: Two-wheeled robot, pole placement controller, parameter estimation, state equation
相關次數: 點閱:157下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙輪機械人為不穩定的系統,需透過控制器才能使其達到穩定的自我平衡以及行走,因此雙輪機械人的控制技術不斷的被研究。雙輪機械人運動控制的研究中,以現代控制為架構,並利用狀態回授控制器使雙輪機械人達到車身平衡、定位與行走等。在移動過程中,若有負載加入時,雙輪機械人之參數無法即時調整,導致雙輪機械人無法穩定行走。基於上述問題,本研究提出以現代控制為基礎架構,利用荷重計更新車身重量,經過動態模型中計算出質心高度和車身轉動慣量,將系統參數更新,接著利用極點擺放控制器演算法即時更新系統控制增益,最後再以雙輪機械人平衡與行走實驗來驗證此方法的正確性。


    Two-wheeled robot is an inherently unstable system, it needs controller to meet the basic requirement, such as, balance and movement. Therefore, two-wheeled robot’s control method is constantly been researched.
    The study of two-wheeled robot is based on modern control with state feedback to achieve the balance and motion control. Two-wheeled robot can not move steadily while load is changed, because the system parameters have not update.
    In order to overcome the problem, using load cell sensor to get the mass of the inverted pendulum and using dynamic model to estimate the center of mass and the moment of inertia of the inverted pendulum. By updating the system parameters to adjust the control gain from pole placement controller to enhance its robustness. In the end, using experiments to verify its performance.

    摘要 I Abstract II 誌謝 III Contents IV List of figures VII List of tables X Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature Review 2 1.3 Research Motivation and Purpose 6 Chapter 2 Experimental Equipment 7 2.1 Electrical subsystem 7 2.2 Sensor subsystem 13 2.3 Mechanical subsystem 19 Chapter 3 Research Methods 22 3.1 System Dynamics and Analysis 22 3.1.1 Electromechanical Analysis 22 3.1.2 Wheel Analysis 24 3.1.3 Inverted Pendulum Analysis 27 3.1.4 System Dynamics Model 29 3.2 Pole-Placement Design 31 3.3 Parameter Estimation 39 Chapter 4 Results and Analysis 42 4.1 Basic experiments 42 4.1.1 The simulation of the dynamic model 42 4.1.2 Balance experiment 44 4.1.3 Disturbance experiment of external force 47 4.1.4 Rotation experiment 50 4.1.5 Motion experiment I 53 4.1.6 Motion experiment II 56 4.2 Motion experiment with load variation 59 4.2.1 Motion experiment without updating system parameters 59 4.2.2 Motion experiment with updating system parameters I 66 4.2.3 Motion experiment with updating system parameters II 79 Chapter 5 Conclusion and Future Work 84 5.1 Conclusion 84 5.2 Future work 84 References 85

    [1] Q. Feng and K. Yamafuji, “Design and Simulation of Control Systems of an Inverted Pendulum,” Robotica, Vol. 6, pp. 235-241. (1988).
    [2] Li Jia Sung, “Wheeled Inverted Pendulum Balancing PID Control,” Intelligent Vehicle Symposium, Versailles, France. (2005).
    [3] Lee, H.-J., Jung, S., “Control of a mobile inverted pendulum robot system,” Proceedings of the 2008 IEEE International Conference on Control, Automation and Systems, Seoul, Korea, pp. 217-222. (2008).
    [4] Ren, T. J., Chen, T. C., Chen, C. J., “Motion control for a two-wheeled vehicle using a self-tuning PID controller,” Control Engineering Practice, pp. 365-375 (2008).
    [5] Lelic, M. A. and P. E. Wellstead., “GENERALIZE POLE-PLACEMENT SELF-TUNING CONTROLLER,” International Journal of Control Vol.2, pp.569-601 (1987).
    [6] Ozaki, H., Ohgushi, T., Shimogawa, T., Lin, C.-J., “Position and orientation control of a wheeled inverted pendulum,” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, Vol.44, pp. 188-195. (2001).
    [7] Grasser F., D'Arrigo A., D'Arrigo S., Rufer A.C., “JOE: a mobile, inverted pendulum,” IEEE Transactions on Industrial Electronics, Vol.39, pp. 107-114 (2002).
    [8] Kim, Y., “Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot,” Journal of Intelligent and Robotic Systems: Theory and Applications Vol.1, pp. 25-46 (2005).
    [9] Akesson, J., Blomdell, A., Braun, R., “Design and Control of YAIP - an Inverted Pendulum on Two Wheels Robot,” Proceedings of the 2006 IEEE International Conference on Control Applications, Munich, Germany, pp.2178 - 2183, (2006).
    [10] SHIROMA N., Matsumoto O, Kajita S., Tani, K., “Cooperative behavior of a wheeled inverted pendulum for object transportation,” Proceedings of the 1996 IEEE International Conference on Intelligent Robots and Systems, pp. 396-401 (1996).
    [11] Sugihara, T., Nakamura and Y., Inoue, H. “Real-time Humanoid Motion Generation Through ZMP Manipulation Based on Inverted Pendulum Control,” 2002 IEEE International Conference on Robotics and Automation, Washington, D.C. (2002).
    [12] Sasaki, M., Yanagihara, N., Matsumoto, O. and Komoriya, K., “Forward and backward motion control of personal riding-type wheeled mobile platform Proceedings,” Proceedings of the 2004 IEEE International Conference on Robotics and Automation, pp. 3331-3336 (2004).
    [13] Goher, K. M. K. and M. O. Tokhi., Modelling, “simulation and balance control of a twowheeled robotic machine with static variation in load position,” European Conference on Modelling and Simulation, pp. 181-187 (2008).
    [14] Ren, T. J., Chen, T.C. and Chen, C. J., “Motion control for a two-wheeled vehicle using a self-tuning PID controller,” Control Engineering Practice, pp. 365-375 (2008).
    [15] Goher, K. M., “Dynamic modeling and control of a two wheeled robotic vehicle with a virtual payload,” ARPN Journal of Engineering and Applied Sciences 6(3): 7-41 (2011).
    [16] Li, H. Q., “Design and application of real-time attitude estimation system for unstable object,” IEEE International Conference on Automation and Logistics, pp. 596-600 (2012).
    [17] Sun, C., “Balance control of two-wheeled self-balancing robot based on Linear Quadratic Regulator and Neural Network” International Conference on Intelligent Control and Information Processing, pp. 862-867 (2013).

    QR CODE