研究生: |
周書炘 Shu-Hsin Chou |
---|---|
論文名稱: |
人工智慧聊天機器人於人才招募之應用 The Application of Artificial Intelligence Chatbots in the Field of Talent Recruitment |
指導教授: |
呂志豪
Shih-Hao Lu |
口試委員: |
鄭仁偉
Jen-Wei Cheng 黃美慈 Mei-Tzu Huang |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 企業管理系 Department of Business Administration |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 招募 、資訊不對稱 、科技接受模式 、人工智慧聊天機器人 |
外文關鍵詞: | Recruitment, Information Asymmetry, Technology Acceptance Model (TAM), Artificial Intelligence Chatbot |
相關次數: | 點閱:813 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的進步,人工智慧已成為人力資源管理不可或缺的一部份。因此,若能借助人工智慧聊天機器人的應用,將有助於企業招募。企業資訊的揭露程度會影響求職者的決策與雙方的適配度。對於企業而言,招募合適的人才,並用於合適的職位,是相當重要的。
本研究以國立臺灣科技大學企業管理系之110學年度碩士班甄試生與考試生為例,將學校視為企業、指導教授視為企業主管、研究生視為求職者,用以探討招募之情境。本文研究設計先使用Python進行程式撰寫,建立一推薦聊天機器人,並利用深度訪談搜集各指導教授與實驗室之相關資訊,作為文本,再以自然語言處理技術為基礎,運用相似度分析建立模型,將碩士生之資訊與文本進行評分排序,並推薦相似度最高之五位指導教授,供碩士生參考,達成師生媒合推薦之目的。
本研究透由推薦聊天機器人進行資訊傳遞以及初步篩選,來改善碩士生之資訊不對稱程度,並利用科技接受模式來預測碩士生對推薦聊天機器人的接受程度。實驗以單組前後測進行,分別於使用推薦聊天機器人前與使用後,發放資訊不對稱與科技接受模式之量表問卷。
The rapid development of technology, Artificial Intelligence (AI) has become an indispensable part of human resource management. Therefore, using Artificial Intelligence Chatbots will conduce to the recruitment. The level of corporate information disclosure would affect the decision-making of job applicants and the level of adaptation between employer and employee. For enterprises, it is important to put the right talent in the right position.
This research takes the MBA students of 2021 at National Taiwan University of Science and Technology for example. We regard the school as a company, advisors as managers, and students as job seekers to discuss the corporate recruitment scenario. The experiment process uses Python for programming and building an Artificial Intelligence Chatbot. In-depth interviews were used to collect the information about each advisor and laboratory. Then, we employ the Natural Language Processing (NLP) technology, which involving in the application of the similarity to build the model. After analyzing and sorting the information of students, it recommends the five most similar advisors for students, which achieves the purpose of matching between advisors and students.
The research uses the Recommended Chatbots to convey information and preliminary screening. The aim is to improve the impacts of information asymmetry and predict user acceptance of the Recommended Chatbots by Technology Acceptance Model (TAM). The experiment was conducted by questionnaires, which about Information Asymmetry and Technology Acceptance Model, and adopted a one-group pretest-posttest design. The questionnaire was tested before and after using the Recommended Chatbots.
一、 中文文獻
賴宜弘、黃芬芬、楊雪華(2015)。科技接受模式中文版量表之編制與相關研究。亞東學報,35,201-222。
吳恩昕(2020)。資訊不對稱下之資訊收集對焦慮的影響〔未出版之碩士論文〕。國立臺灣科技大學企業管理系碩士班。
鄭寓恩(2021)。資訊提供對組織吸引力之影響-以資訊不對稱為中介變項〔未出版之碩士論文〕。國立臺灣科技大學企業管理系碩士班。
二、 英文文獻
Akerlof, G. A. (1970). The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3), 488 – 500.
Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2018). Transforming the Communication Between Citizens and Government Through AI-Guided Chatbots. Government Information Quarterly, 36(2).
Albert, E. T. (2019). AI in Talent Acquisition: A Review of AI-Applications Used in Recruitment and Selection. Strategic HR Review, 18(5), 215-221.
Bacharach, S. B. (1989). Organizational Theories: Some Criteria for Evaluation. Academy of Management Review, 14(4), 496-515.
Berkelaar, B. L., & Buzzanell, P. M. (2014), Cybervetting, Person–Environment Fit, and Personnel Selection: Employers’ Surveillance and Sensemaking of Job Applicants’ Online Information. Journal of Applied Communication Research, 42(4), 456-476.
Buaprommee, N., & Polyorat, K. (2016). Intention to Purchase Traceable Meat: The Impacts of Perceived Information Asymmetry, Informativeness, Usefulness, and Norm. Asian Journal of Business and Accounting, 9(1).
Bergh, D. D., Ketchen, D. J., Orlandi, I., Heugens, P. P. M. A. R., & Boyd, B. K. (2019). Information Asymmetry in Management Research: Past Accomplishments and Future Opportunities. Journal of Management, 45(1), 122 – 158.
Caldwell, D. F., & O’reilly C. A. (1985). The Impact of Information on Job Choices and Turnover. Academy of Management Journal, 28(4), 934-943.
Chambers, E. G., Foulon, M., Handfield-Jones, H., Hankin, S. M., & Michaels, E. G. (1998). The War for Talent. The McKinsey Quarterly, 3(3), 44-57.
Cabrera, A. F., & La Nasa, S. M. (2000). Understanding the College-Choice Process. New Directions for Institutional Research, 27(3), 5-22.
Connelly, B. L., Certo, S. T., Ireland, R. D., & Reutzel, C. R. (2011). Signaling Theory: A Review and Assessment. Journal of Management, 37(1), 39 – 67.
Chang, E., & Chin, H. (2018). Signaling or Experiencing: Commitment HRM Effects on Recruitment and Employees' Online Ratings. Journal of Business Research, 84, 175-185.
Chanler, M., Chelovechkov, A., Oest, Marianne., Tockey, D., Sandhu, M., Gibbons, B., Barrett, J., Matejka, E., Robertson, F., McGill, K., Lewis, G., & Ignatova, M. (2019). The Future of Recruiting. LinkedIn Talent Solutions.
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8.
Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. MIT Sloan School of Management, Cambridge, MA.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003.
Davis, F. D., & Venkatesh, V. (1996). A Critical Assessment of Potential Measurement Biases in the Technology Acceptance Model: Three Experiments. International Journal of Human-Computer Studies, 45(1), 19-45.
Ecker, B., van Triest, S., & Williams, C. (2013). Management Control and the Decentralization of R&D. Journal of Management, 39(4), 906–927.
Engin, Z., & Treleaven, P. (2019). Algorithmic Government: Automating Public Services and Supporting Civil Servants in Using Data Science Technologies. The Computer Journal, 62(3), 448-460.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
Falk, S., Hammermann, A., Mohnen, A., & Werner, A. (2013). Different Degrees of Informational Asymmetry on Job Markets and Its Impact on Companies’ Recruiting Success. Journal of Business Economics, 83, 295-317.
Gigi, G. S., & Priscilla, G. S. (2020). HR Recruitment Through Chatbot- An Innovative Approach. Journal of Contemporary Issues in Business and Government, 26(2), 564-570.
Hill, J., Ford, W. R., & Farreras, I. G. (2015). Real Conversations with Artificial Intelligence: A Comparison Between Human-Human Online Conversations and Human-Chatbot Conversations. Computers in Human Behavior, 49, 245-250.
Hmoud, B., & Laszlo, V. (2019). Will Artificial Intelligence Take Over Humanresources Recruitment and Selection? Network Intelligence Studies, 7(13), 21-30.
Jatav, S. (2018). Analysis of Factors Influencing the Choice Decisions of Graduate Students. International Bulletin of Management and Economics, 3.
Jang, M., Jung, Y., & Kim, S. (2021). Investigating Managers’ Understanding of Chatbots in the Korean Financial Industry. Computers in Human Behavior, 120(1).
Kallio, R. E. (1995). Factors Influencing the College Choice Decisions of Graduate Students. Research in Higher Education, 36(1), 109-124.
Krishna, H. G., & Mohan V. (2016). Social Media Recruitment from Employers Perspective. International Journal of Applied Business and Economic Research, 14(14), 153-166.
Kane, G. C., Palmer, D., Phillips A. N., & Kiron D. (2017). Winning the Digital War for Talent. MIT Sloan Management Review, 58(2), 17-19.
Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communication of the Association for Information Systems, 12(50), 752-780.
Lalwani, T., Bhalotia, S., Pal, A., Bisen, S., & Rathod, V. (2018). Implementation of a Chatbot System Using AI and NLP. International Journal of Innovative Research in Computer Science & Technology, 6(3).
Madakam, S., Holmukhe, R. M., & Jaiswal, D. K. (2019). The Future Digital Work Force: Robotic Process Automation (RPA). Journal of Information Systems and Technology Management, 16.
Miner, A. S., Laranjo, L., & Kocaballi, A. B. (2020). Chatbots in the Fight Against COVID-19 Pandemic. npj Digital Medicine, 3(65).
Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of Artificial Intelligence (AI)-Led Chatbot Services in Healthcare: A Mixed-Methods Study. Digital Health, 5(1).
Nawaz, N., & Gomes, A. M. (2019). Artificial Intelligence Chatbots are New Recruiters. International Journal of Advanced Computer Science and Applications, 10(9).
Patel, N. P., Patel, D. A., Parikh, D. R., & Patel, R. R. (2019). AI and Web-Based Human-Like Interactive University Chatbot (UNIBOT) [Conference presentation]. 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA).
Rutter, R., Roper, S., & Lettice F. (2016). Social Media Interaction, the University Brand and Recruitment Performance. Journal of Business Research, 69(8), 3096-3014.
Riikkinen, M., Saarijärvi, H., Sarlin, P., & Lähteenmäki, I. (2018). Using Artificial Intelligence to Create Value in Insurance. International Journal of Bank Marketing, 36(6). 1145-1168.
Spence, M. (1973). Job Market Signaling. The Quarterly Journal of Economics, 87(3), 335-374.
Stiglitz, J. E. (2002). Information and the Change in the Paradigm in Economics. The American Economic Review, 92(3), 460 - 501.
Skaggs, B. C., & Snow, C. C. (2004). The Strategic Signaling of Capabilities by Service Firms in Different Information Asymmetry Environments. Strategic Organization, 2(3), 271-291.
Saks, A. M., & Uggerslev, K. L. (2010). Sequential and Combined Effects of Recruitment Information on Applicant Reactions. Journal of Business and Psychology, 25(3), 351-365.
Senthil Kumaran, V., & Sankar, A. (2013). Towards an Automated System for Intelligent Screening of Candidates for Recruitment Using Ontology Mapping (EXPERT). International Journal of Metadata Semantics and Ontologies, 8(1), 54-64.
Smutny, P., & Schreiberova, P. (2020). Chatbots for Learning: A Review of Educational Chatbots for the Facebook Messenger. Computers & Education, 151.
Taherdoost, H. (2018). A Review of Technology Acceptance and Adoption Models and Theories. Procedia Manufacturing, 22, 960-967.
Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, and Emotion into the Technology Acceptance Model. Information Systems Research, 11(4), 342-365.
Venkatesh V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186-204.
Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and Research Agenda on Interventions. Decision Sciences, 39(2), 273-315.
Volini, E., Schwartz, J, Roy, I., Hauptmann, M., Durme, Y. V., Denny, B., & Bersin, J. (2019). 2019 Deloitte Global Human Capital Trends. Deloitte Insights.
Williamson, O. E. (1975). Markets and Hierarchies: Analysis and Antitrust Implications. New York: Free Press.
Wilden, R., Gudergan, S., & Lings, I. (2010). Employer Branding: Strategic Implications for Staff Recruitment. Journal of Market Management, 26(1-2), 56-73.
Walford-Wright, G., & Scott-Jackson, W. (2018). Talent Rising; People Analytics and Technology Driving Talent Acquisition Strategy. Strategic HR Review, 17(5).
World Health Organization (2020, April 15). WHO Launches a Chatbot on Facebook Messenger to Combat COVID-19 Misinformation. World Health Organization. https://www.who.int/news-room/feature-stories/detail/who-launches-a-chatbot-powered-facebook-messenger-to-combat-covid-19-misinformation