簡易檢索 / 詳目顯示

研究生: 張鴻暉
Hong-Hui Zhang
論文名稱: 氫氧化鎳與氧化銅在導電性鑽石薄膜上之非酵素型葡萄糖感測器
Non-enzymatic glucose sensors based on nickel hydroxide, copper oxide on onductive diamond structures
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 柯文政
Wen-Cheng Ke
張守進
Shou-Jin Zhang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 145
中文關鍵詞: 摻雜氮奈米鑽石葡萄糖感測器氧化銅氫氧化鎳
外文關鍵詞: nano-diamond, glucose sensor, copper oxide, nickel hydroxide
相關次數: 點閱:223下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討利用導電奈米鑽石當作工作電極,再利用氧化銅、氫氧化鎳做修飾,最後再利用不同結構的基板來製作葡萄糖感測器,探討從結構及材料種類及材料厚度來實驗出最佳的葡萄糖感測器條件,本論文利用MPCVD沉積摻雜氮的導電奈米鑽石薄膜當做工作電極,利用濺鍍設備濺鍍金屬鎳及氧化銅,再利用循環伏安法使金屬鎳改質成氫氧化鎳,最後進行元件的物性及葡萄糖靈敏度量測,其結果為有加金字塔結構的靈敏度相對較高,在氫氧化鎳部分,氫氧化鎳(100nm)厚度濺鍍於金字塔結構鑽石薄膜的靈敏度有最高的值3070(μA mM −1 cm −2),而在氧化銅的部分,氧化銅(75nm)厚度濺鍍於金字塔結構鑽石薄膜的靈敏度有最高的值1993(μA mM −1 cm −2),而就穩定性分析來說,氧化銅的試片平均在元件放置28天後只衰減不到其靈敏度的10%,但氫氧化鎳的試片平均在元件放置28天後衰減其靈敏度的36%,可見氧化銅比氫氧化鎳有更好的穩定性,其中導電鑽石薄膜提供良好的葡萄糖傳感特性,對於未來生物感測之應用具有一定的潛力。


    We have designed glucose sensors based on the use of highly conducting nitrogen incorporated diamond film (NDFs) electrodes grown by microwave plasma enhanced chemical vapor deposition. The post deposition of Ni(OH)2 and CuO on Pyramidal NDFs and plane NDFs, which reveal differences for the glucose detection. The systematic cyclic voltammetry measurements on the 100nm thickness of Ni(OH)2 on the pyramidal NDFs glucose sensors attains higher sensitivity properties(3070(μA mM-1 cm-2)) than those of Ni(OH)2(120nm)/plane NDFs(2444(μA mM-1 cm-2)) and CuO(75nm)/pyramid NDFs glucose sensors(1993(μA mM-1 cm-2)).
    In terms of stability, CuO/NDFs based sensors reveals much better stability than Ni(OH)2/NDFs based sensors. The CuO/NDFs test chips were decreased less than 10% however, Ni(OH)2/NDFs based sensors were decreased up to 36% after exposing in air at room temperature for 28 days.
    The higher sensitivity with high selectivity and reliable stability might be due to the use of the highly electrically conductive diamond film electrodes, which is responsible for good glucose sensing properties, and exhibits a significant degree of potential on the future bio-sensing applications.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 5 2.1 感測器 5 2.2 生物感測器 6 2.3 葡萄糖感測器 10 2.3.1 葡萄糖感測器的起始 10 2.3.2 葡萄糖感測器發展世代 11 2.3.3 葡萄糖檢測方法 14 2.3.4 非酵素型葡萄糖感測器 14 2.3.4.a 非酵素型葡萄糖感測器電極種類 15 2.3.4.b 非酵素型葡萄糖感測器修飾物種類 15 2.4 葡萄糖結構與性質 16 2.4.1 葡萄糖 16 2.4.2 葡萄酸內酯 17 2.4.3 葡萄糖酸 18 2.5 奈米鑽石 19 2.5.1 奈米鑽石薄膜特性簡介 19 2.5.2 奈米鑽石成核機制 21 2.5.3 奈米鑽石薄膜之成長方法 23 2.6 電化學分析法 27 2.6.1 電化學分析法-三電極系統 27 2.6.2 電化學分析法-循環伏安法 28 2.6.3 電化學分析法-定電位沈積分析法 29 2.6.4 電化學分析法-定電流沈積分析法 30 2.7 矽基板金字塔結構之蝕刻機制 30 第三章 實驗方法 33 3.1 實驗流程 33 3.2 矽基板金字塔結構之製備 34 3.2.1 矽晶圓清洗處理流程 34 3.2.2 鹼性蝕刻溶液製備金字塔結構 35 3.3 氮摻雜導電奈米鑽石之製備 36 3.3.1 以鑽石粉末及鈦金屬粉末震盪製備種子層 36 3.3.2 以微波電漿化學氣相沉積法成長奈米鑽石薄膜 37 3.4 濺鍍金屬修飾物 38 3.4.1 以射頻磁控濺鍍機濺鍍鎳金屬 38 3.4.2 以射頻磁控濺鍍機濺鍍氧化銅金屬氧化物 40 3.5 葡萄糖感測器試片封裝及循環伏安法表面改質 41 3.5.1 葡萄糖感測器試片封裝 41 3.5.2 葡萄糖感測器表面改質 42 3.6 實驗分析儀器介紹 42 3.6.1 場發射掃描式電子顯微鏡 ( FE-SEM ) 42 3.6.2 X射線繞射儀 (X-ray diffraction,XRD) 43 3.6.3 顯微拉曼光譜儀(Micro-Raman) 45 3.6.4 X射線光電子能譜儀 (X-Ray Photoelectron Spectroscopy,XPS) 46 3.6.5 原子力顯微鏡(Atomic Force Microscope,AFM) 47 3.6.6 傅利葉紅外線光譜儀(Fourier Transform Infrared spectrometer, FTIR) 48 3.6.7 電化學分析儀 (Electrochemical analyzer) 49 第四章 結果與討論 50 4.1 以不同結構成長摻雜氮的奈米鑽石薄膜之製備與特性比較分析 50 4.1.1 摻雜氮的奈米鑽石薄膜表面型態分析 50 4.1.2 摻雜氮的奈米鑽石薄膜拉曼光譜分析 52 4.1.3 摻雜氮的奈米鑽石薄膜X射線繞射儀分析 54 4.1.4 摻雜氮的奈米鑽石薄膜四點探針分析 55 4.1.5 摻雜氮的導電奈米鑽石葡萄糖靈敏度分析 56 4.2 不同厚度的氫氧化鎳/導電奈米鑽石薄膜特性比較分析 58 4.2.1 氫氧化鎳/導電奈米鑽石表面型態分析 58 4.2.2 摻雜氮的奈米鑽石薄膜拉曼光譜分析 66 4.2.3 氫氧化鎳/導電奈米鑽石X射線繞射儀分析 67 4.2.4 氫氧化鎳/導電奈米鑽石傅立葉紅外光譜分析 69 4.2.5 氫氧化鎳/導電奈米鑽石葡萄糖量測之電化學分析 70 4.2.5.a 循環伏安法分析 70 4.2.5.b 定電位沈積分析法分析(靈敏度分析) 74 4.2.5.c 定電位沈積分析法分析(選擇性分析) 82 4.2.5.d 定電位沈積分析法分析(穩定度分析-時間) 86 4.2.5.e 定電位沈積分析法分析(穩定度分析-溫度) 89 4.2.6 氫氧化鎳/導電奈米鑽石薄膜葡萄糖靈敏度分析 95 4.3 不同厚度的氧化銅/導電奈米鑽石薄膜特性比較分析 97 4.3.1 氧化銅/導電奈米鑽石表面型態分析 97 4.3.2 摻雜氮的奈米鑽石薄膜拉曼光譜分析 104 4.3.3 氧化銅/導電奈米鑽石X射線繞射儀分析 105 4.3.4 氧化銅/導電奈米鑽石傅立葉紅外光譜分析 106 4.3.5 氧化銅/導電奈米鑽石葡萄糖量測之電化學分析 107 4.3.5.a 循環伏安法分析 107 4.3.5.b 定電位沈積分析法分析(靈敏度分析) 110 4.3.5.c 定電位沈積分析法分析(選擇性分析) 118 4.3.5.d 定電位沈積分析法分析(穩定度分析-時間) 121 4.3.5.e 定電位沈積分析法分析(穩定度分析-溫度) 125 4.3.6 氧化銅/導電奈米鑽石薄膜葡萄糖靈敏度分析 131 4.4 各種薄膜材料葡萄糖靈敏度分析比較 133 第五章 結論與未來展望 137 5.1 結論 137 5.2 未來展望 140 參考文獻 141

    參考文獻

    [1] 宇羿國際健康有限公司 資料庫提供 http://www.soar.com.tw/Links05.htm
    [2] 百度百科-联合国糖尿病日http://baike.baidu.com/view/1983504.htm?fromtitle=%E4%B8%96%E7%95%8C%E7%B3%96%E5%B0%BF%E7%97%85%E6%97%A5&fromid=427567&type=search
    [3] 行政院衛生署統計室http://www.mohw.gov.tw/cht/dos/
    [4] 糖尿病衛教 http://homepage.vghtpe.gov.tw/~meta/niddm.htm
    [5] 台北榮總糖尿病衛教http://wd.vghtpe.gov.tw/meta/site.jsp?id=1696
    [6] 許清曉,常用臨床檢驗手冊,藝軒圖書,(2001)。
    [7] 徐俊旭,可棄式多層奈米碳管修飾性葡萄糖生物感測器之研究,雲林科技大學化學工程與材料工程研究所碩士論文,2007
    [8] Chen, Yan-Shi, and Jin-Hua Huang. "Arrayed CNT–Ni nanocomposites grown directly on Si substrate for amperometric detection of ethanol." Biosensors and Bioelectronics 26.1 (2010): 207-212.
    [9] 生物感測器 吳宗正http://www.bime.ntu.edu.tw/~dsfon/LifeScience/lifesci.htm
    [10] 莊亞璇,電化學阻抗式肝功能生物感測器,國立清華大學材料科學工程學系碩士論文,2010
    [11] 化學生物感測器講義 東華大學化學系 蘇宏基編著http://www.chem.ndhu.edu.tw/ezfiles/27/1027/img/828/su.pdf
    [12] 謝振傑,光纖生物感測器,物理雙月刊(廿八卷四期)(2006)。
    [13] 陳詩,電流式葡萄糖生物感測器之製備及測試,國立臺灣科技大學化學工程系碩士論文,2009
    [14] 許峰碩,奈米碳黑在免疫層析檢測上的應用,國立中興大學化學工程研究所碩士論文,2002
    [15] U. E. Spichiger-Keller, Chemical Sensors and Biosensors for Medical and Biological Applications, Wiley-VCH. (1998).
    [16] Tess, Mark E., and James A. Cox. "Chemical and biochemical sensors based on advances in materials chemistry." Journal of pharmaceutical and biomedical analysis 19.1 (1999): 55-68..
    [17] 呂博文,Fe3O4 奈米微粒修飾性網印碳電極於葡萄糖生物感測器之研究,國立雲林科技大學化學工程研究所碩士論文,2006
    [18] Lee, Shyh-Hwang, et al. "Electrochemical study on screen-printed carbon electrodes with modification by iron nanoparticles in Fe (CN) 6 4−/3− redox system." Analytical and bioanalytical chemistry 383.3 (2005): 532-538.
    [19] Toghill, Kathryn E., and Richard G. Compton. "Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation." Int J Electrochem Sci 5.9 (2010): 1246-1301.
    [20] Turner, Anthony PF, Beining Chen, and Sergey A. Piletsky. "In vitro diagnostics in diabetes: meeting the challenge." Clinical chemistry 45.9 (1999): 1596-1601.
    [21] 張紘銓,張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
    [22] 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003
    [23] 蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007
    [24] 吳政鴻,超臨界流體合成鈀/石墨烯/離子液體之複合材料 的電化學生化感測特性,國立中央大學材料科學與工程研究所碩士論文,2011
    [25] 李嘉勳,中孔洞鎳電極在非酵素葡萄糖感測之研究,國立高雄應用科技大學化學工程與材料工程系碩士論文,2009
    [26] Wang, Guangfeng, et al. "Non-enzymatic electrochemical sensing of glucose."Microchimica Acta 180.3-4 (2013): 161-186.
    [27] Wang, Juan, and Wei-De Zhang. "Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose." Electrochimica Acta 56.22 (2011): 7510-7516.
    [28] 維基百科-葡萄糖https://zh.wikipedia.org/wiki/%E8%91%A1%E8%90%84%E7%B3%96
    [29] 維基百科-Glucono delta-lactone https://en.wikipedia.org/wiki/Glucono_delta-lactone
    [30] 維基百科-葡萄糖酸https://zh.wikipedia.org/wiki/葡萄糖酸
    [31] 翁瑄博,奈微米鑽石於不同結構矽基板之場發射特性硏究,國立臺灣科技大學光電工程研究所,2013
    [32] 曾永華、陳柏穎、鄭宇明和游銘永,"人造合成鑽石及應用",科學發展,2014。
    [33] 劉榮忠,摻硼鑽石電極結合安培偵測法在毛細管電泳系統中.分析含硫胺基酸之研究,國立中山大學化學研究所碩士論文,2004
    [34] 柯志諭,氫氧化鎳修飾奈米鑽石薄膜開發高靈敏度非酵素型生物感測電極之應用,國立清華大學材料科學工程學系碩士論文,2010
    [35] Yao, Kaiyuan, et al. "Carbon SP 2-SP 3 technology: Graphene-on-diamond thin film UV detector." Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014.
    [36] Kobashi, Koji. Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier, 2010.
    [37] Liu, Huimin, and David S. Dandy. Diamond chemical vapor deposition: nucleation and early growth stages. Elsevier, 1996.
    [38] Jiang, X., et al. "Diamond film orientation by ion bombardment during deposition." Applied physics letters 68.14 (1996): 1927-1929.
    [39] Iijima, Sumio, Yumi Aikawa, and Kazuhiro Baba. "Early formation of chemical vapor deposition diamond films." Applied physics letters 57.25 (1990): 2646-2648.
    [40] Dennig, Paul A., and David A. Stevenson. "Influence of substrate topography on the nucleation of diamond thin films." Applied physics letters 59.13 (1991): 1562-1564.
    [41] 董耀中,熱退火後處理對於奈米鑽石薄膜場發射特性之研究,雲林科技大學電子工程系實務專題報告,2007
    [42] Jong-Hee Park, T.S. sudarshan, Chemical vapor deposition, The materials information society (1989)
    [43] R.F. Davis Noyes, Diamond Films and Coatings, Moyes publications, p.69 (1993)
    [44] Matsumoto, Seiichiro, et al. "Vapor deposition of diamond particles from methane." Japanese Journal of applied physics 21.4A (1982): L183.
    [45] Tiwari, Jitendra N., et al. "Direct synthesis of vertically interconnected 3-D graphitic nanosheets on hemispherical carbon particles by microwave plasma CVD." Plasmonics 6.1 (2011): 67-73.
    [46] Arora, Suneet, and V. D. Vankar. "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness."Thin Solid Films 515.4 (2006): 1963-1969.
    [47] Matsumoto, Seiichiro, Mototsugu Hino, and Toyohiko Kobayashi. "Synthesis of diamond films in a RF induction thermal plasma." Applied physics letters 51.10 (1987): 737-739.
    [48] Zhang, Tao, et al. "The effect of deposition parameters on the morphology of micron diamond powders synthesized by HFCVD method." Journal of Crystal Growth 372 (2013): 49-56.
    [49] Meyer, Duane E., Rodney O. Dillon, and John A. Woollam. "Radio‐frequency plasma chemical vapor deposition growth of diamond." Journal of Vacuum Science & Technology A 7.3 (1989): 2325-2327.
    [50] S.J. Kim, B. K. Jul, Y.H. Lee, B.S. Park, IEEE, p.526 (1996)
    [51] 鄭人豪,白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究,南台科技大學化學工程系碩士論文,2004
    [52] Skoog, Douglas A., and Donald M. West. Principles of instrumental analysis. Vol. 158. Philadelphia: Saunders College, 1980.
    [53] D. R. Crow ; 黃進益譯,“電化學的原理及應用,高立出版,(1998)
    [54] Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis, Saunders College, Fifth Edition, New York, 1998.
    [55] Wang, Joseph. Analytical electrochemistry. John Wiley & Sons, 2006.
    [56] 圖片出處http://140.136.176.3/joom/data/menu/files/exp/CV.ppt
    [57] Seidel, H., et al. "Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers." Journal of the electrochemical society 137.11 (1990): 3612-3626.
    [58] Seidel, H., et al. "Anisotropic etching of crystalline silicon in alkaline solutions II. Influence of dopants." Journal of the Electrochemical Society 137.11 (1990): 3626-3632.
    [59] Mohammad Jellur Rahman, “Lecture Notes on Structure ofMatter,” Department of Physics BUET, Dhaka-1000.
    [60] Bean, Kenneth E. "Anisotropic etching of silicon." IEEE Transactions on Electron Devices 25.10 (1978): 1185-1193.
    [61] 國立台灣科技大學貴儀中心日本JEOL-6500F 場發射掃描式電子顯微鏡
    [62] 立台灣科技大學材料所X-ray繞射儀 (Bruker, D8 Discover SSS Multi Function High Power X-Ray Diffractometer)
    [63] Richard L. McCreery. Raman Spectroscopy for Chemical Analysis ,John Wiley and Sons. NY, 1-5(2000)
    [64] 國立台灣科技大學化學工程系的顯微拉曼光譜儀,機型UniNano-UniG2D
    [65] 國立台灣科技大學材料所原子力顯微鏡 (AFM)
    [66] Sankaran, K. J., et al. "Origin of a needle-like granular structure for ultrananocrystalline diamond films grown in a N2/CH4 plasma." Journal of Physics D: Applied Physics 45.36 (2012): 365303.
    [67] Pradhan, Debabrata, and I. Nan Lin. "Grain-Size-Dependent Diamond− Nondiamond Composite Films: Characterization and Field-Emission Properties." ACS applied materials & interfaces 1.7 (2009): 1444-1450.
    [68] Yu-Fen Tzeng, Chi-Young Lee, Hsin-Tien Chiu, Nyan-Hwa Tai,I-Nan Liin, ”Electron field emission properties on ultra-nano-crystalline diamond coated silicon nanowires”,Diamond & Related Materials, (2008):1817-1820
    [69] K.G. Saw, J. du Plessis, Materials Letters, pp.1344-1348 (2004)
    [70] Panda, Kalpataru, et al. "Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films." ACS applied materials & interfaces 6.11 (2014): 8531-8541.
    [71] Hall, David S., et al. "Nickel hydroxides and related materials: a review of their structures, synthesis and properties." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 471. No. 2174. The Royal Society, 2015.
    [72] Lu, Li-Min, et al. "A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy."Biosensors and Bioelectronics 25.1 (2009): 218-223.
    [73] Kung, Chung-Wei, Yu-Heng Cheng, and Kuo-Chuan Ho. "Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor." Sensors and Actuators B: Chemical 204 (2014): 159-166.
    [74] Choi, Taejin, et al. "Synthesis of carbon nanotube–nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing." Biosensors and Bioelectronics 63 (2015): 325-330.
    [75] Qiao, Ningqiang, and Jianbin Zheng. "Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene." Microchimica Acta 177.1-2 (2012): 103-109.
    [76] Tian, Huifeng, et al. "Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode." Electrochimica Acta 96 (2013): 285-290.
    [77] Toghill, Kathryn E., et al. "The non-enzymatic determination of glucose using an electrolytically fabricated nickel microparticle modified boron-doped diamond electrode or nickel foil electrode." Sensors and Actuators B: Chemical 147.2 (2010): 642-652.
    [78] Kim, Sang Hoon, Ahmad Umar, and Sang-Woon Hwang. "Rose-like CuO nanostructures for highly sensitive glucose chemical sensor application."Ceramics International (2015).
    [79] Zhang, Ping, et al. "A highly sensitive nonenzymatic glucose sensor based on CuO nanowires." Microchimica Acta 176.3-4 (2012): 411-417.
    [80] Li, Changli, et al. "Nanoporous CuO layer modified Cu electrode for high performance enzymatic and non-enzymatic glucose sensing." Nanotechnology26.1 (2015): 015503.
    [81] Dung, Nguyen Quoc, et al. "A high-performance nonenzymatic glucose sensor made of CuO–SWCNT nanocomposites." Biosensors and Bioelectronics 42 (2013): 280-286.
    [82] Luo, Liqiang, Limei Zhu, and Zhenxin Wang. "Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode." Bioelectrochemistry 88 (2012): 156-163.
    [83] Liu, Guangyue, et al. "Improvement of sensitive CuO NFs–ITO nonenzymatic glucose sensor based on in situ electrospun fiber." Talanta 101 (2012): 24-31.

    QR CODE